# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. import logging import warnings from collections.abc import AsyncIterator from functools import lru_cache from typing import Any from openai import APIConnectionError, AsyncOpenAI, BadRequestError from llama_stack.apis.common.content_types import ( InterleavedContent, InterleavedContentItem, TextContentItem, ) from llama_stack.apis.inference import ( ChatCompletionRequest, ChatCompletionResponse, ChatCompletionResponseStreamChunk, CompletionRequest, CompletionResponse, CompletionResponseStreamChunk, EmbeddingsResponse, EmbeddingTaskType, Inference, LogProbConfig, Message, OpenAIEmbeddingsResponse, ResponseFormat, SamplingParams, TextTruncation, ToolChoice, ToolConfig, ) from llama_stack.apis.inference.inference import ( OpenAIChatCompletion, OpenAIChatCompletionChunk, OpenAICompletion, OpenAIMessageParam, OpenAIResponseFormatParam, ) from llama_stack.apis.models import Model, ModelType from llama_stack.models.llama.datatypes import ToolDefinition, ToolPromptFormat from llama_stack.providers.utils.inference import ( ALL_HUGGINGFACE_REPOS_TO_MODEL_DESCRIPTOR, ) from llama_stack.providers.utils.inference.model_registry import ( ModelRegistryHelper, ) from llama_stack.providers.utils.inference.openai_compat import ( convert_openai_chat_completion_choice, convert_openai_chat_completion_stream, prepare_openai_completion_params, ) from llama_stack.providers.utils.inference.prompt_adapter import content_has_media from . import NVIDIAConfig from .models import MODEL_ENTRIES from .openai_utils import ( convert_chat_completion_request, convert_completion_request, convert_openai_completion_choice, convert_openai_completion_stream, ) from .utils import _is_nvidia_hosted logger = logging.getLogger(__name__) class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper): def __init__(self, config: NVIDIAConfig) -> None: # TODO(mf): filter by available models ModelRegistryHelper.__init__(self, model_entries=MODEL_ENTRIES) logger.info(f"Initializing NVIDIAInferenceAdapter({config.url})...") if _is_nvidia_hosted(config): if not config.api_key: raise RuntimeError( "API key is required for hosted NVIDIA NIM. Either provide an API key or use a self-hosted NIM." ) # elif self._config.api_key: # # we don't raise this warning because a user may have deployed their # self-hosted NIM with an API key requirement. # # warnings.warn( # "API key is not required for self-hosted NVIDIA NIM. " # "Consider removing the api_key from the configuration." # ) self._config = config @lru_cache # noqa: B019 def _get_client(self, provider_model_id: str) -> AsyncOpenAI: """ For hosted models, https://integrate.api.nvidia.com/v1 is the primary base_url. However, some models are hosted on different URLs. This function returns the appropriate client for the given provider_model_id. This relies on lru_cache and self._default_client to avoid creating a new client for each request or for each model that is hosted on https://integrate.api.nvidia.com/v1. :param provider_model_id: The provider model ID :return: An OpenAI client """ @lru_cache # noqa: B019 def _get_client_for_base_url(base_url: str) -> AsyncOpenAI: """ Maintain a single OpenAI client per base_url. """ return AsyncOpenAI( base_url=base_url, api_key=(self._config.api_key.get_secret_value() if self._config.api_key else "NO KEY"), timeout=self._config.timeout, ) special_model_urls = { "meta/llama-3.2-11b-vision-instruct": "https://ai.api.nvidia.com/v1/gr/meta/llama-3.2-11b-vision-instruct", "meta/llama-3.2-90b-vision-instruct": "https://ai.api.nvidia.com/v1/gr/meta/llama-3.2-90b-vision-instruct", } base_url = f"{self._config.url}/v1" if self._config.append_api_version else self._config.url if _is_nvidia_hosted(self._config) and provider_model_id in special_model_urls: base_url = special_model_urls[provider_model_id] return _get_client_for_base_url(base_url) async def _get_provider_model_id(self, model_id: str) -> str: if not self.model_store: raise RuntimeError("Model store is not set") model = await self.model_store.get_model(model_id) if model is None: raise ValueError(f"Model {model_id} is unknown") return model.provider_model_id async def completion( self, model_id: str, content: InterleavedContent, sampling_params: SamplingParams | None = None, response_format: ResponseFormat | None = None, stream: bool | None = False, logprobs: LogProbConfig | None = None, ) -> CompletionResponse | AsyncIterator[CompletionResponseStreamChunk]: if sampling_params is None: sampling_params = SamplingParams() if content_has_media(content): raise NotImplementedError("Media is not supported") # ToDo: check health of NeMo endpoints and enable this # removing this health check as NeMo customizer endpoint health check is returning 404 # await check_health(self._config) # this raises errors provider_model_id = await self._get_provider_model_id(model_id) request = convert_completion_request( request=CompletionRequest( model=provider_model_id, content=content, sampling_params=sampling_params, response_format=response_format, stream=stream, logprobs=logprobs, ), n=1, ) try: response = await self._get_client(provider_model_id).completions.create(**request) except APIConnectionError as e: raise ConnectionError(f"Failed to connect to NVIDIA NIM at {self._config.url}: {e}") from e if stream: return convert_openai_completion_stream(response) else: # we pass n=1 to get only one completion return convert_openai_completion_choice(response.choices[0]) async def embeddings( self, model_id: str, contents: list[str] | list[InterleavedContentItem], text_truncation: TextTruncation | None = TextTruncation.none, output_dimension: int | None = None, task_type: EmbeddingTaskType | None = None, ) -> EmbeddingsResponse: if any(content_has_media(content) for content in contents): raise NotImplementedError("Media is not supported") # # Llama Stack: contents = list[str] | list[InterleavedContentItem] # -> # OpenAI: input = str | list[str] # # we can ignore str and always pass list[str] to OpenAI # flat_contents = [content.text if isinstance(content, TextContentItem) else content for content in contents] input = [content.text if isinstance(content, TextContentItem) else content for content in flat_contents] provider_model_id = await self._get_provider_model_id(model_id) extra_body = {} if text_truncation is not None: text_truncation_options = { TextTruncation.none: "NONE", TextTruncation.end: "END", TextTruncation.start: "START", } extra_body["truncate"] = text_truncation_options[text_truncation] if output_dimension is not None: extra_body["dimensions"] = output_dimension if task_type is not None: task_type_options = { EmbeddingTaskType.document: "passage", EmbeddingTaskType.query: "query", } extra_body["input_type"] = task_type_options[task_type] try: response = await self._get_client(provider_model_id).embeddings.create( model=provider_model_id, input=input, extra_body=extra_body, ) except BadRequestError as e: raise ValueError(f"Failed to get embeddings: {e}") from e # # OpenAI: CreateEmbeddingResponse(data=[Embedding(embedding=list[float], ...)], ...) # -> # Llama Stack: EmbeddingsResponse(embeddings=list[list[float]]) # return EmbeddingsResponse(embeddings=[embedding.embedding for embedding in response.data]) async def openai_embeddings( self, model: str, input: str | list[str], encoding_format: str | None = "float", dimensions: int | None = None, user: str | None = None, ) -> OpenAIEmbeddingsResponse: raise NotImplementedError() async def chat_completion( self, model_id: str, messages: list[Message], sampling_params: SamplingParams | None = None, response_format: ResponseFormat | None = None, tools: list[ToolDefinition] | None = None, tool_choice: ToolChoice | None = ToolChoice.auto, tool_prompt_format: ToolPromptFormat | None = None, stream: bool | None = False, logprobs: LogProbConfig | None = None, tool_config: ToolConfig | None = None, ) -> ChatCompletionResponse | AsyncIterator[ChatCompletionResponseStreamChunk]: if sampling_params is None: sampling_params = SamplingParams() if tool_prompt_format: warnings.warn("tool_prompt_format is not supported by NVIDIA NIM, ignoring", stacklevel=2) # await check_health(self._config) # this raises errors provider_model_id = await self._get_provider_model_id(model_id) request = await convert_chat_completion_request( request=ChatCompletionRequest( model=provider_model_id, messages=messages, sampling_params=sampling_params, response_format=response_format, tools=tools, stream=stream, logprobs=logprobs, tool_config=tool_config, ), n=1, ) try: response = await self._get_client(provider_model_id).chat.completions.create(**request) except APIConnectionError as e: raise ConnectionError(f"Failed to connect to NVIDIA NIM at {self._config.url}: {e}") from e if stream: return convert_openai_chat_completion_stream(response, enable_incremental_tool_calls=False) else: # we pass n=1 to get only one completion return convert_openai_chat_completion_choice(response.choices[0]) async def openai_completion( self, model: str, prompt: str | list[str] | list[int] | list[list[int]], best_of: int | None = None, echo: bool | None = None, frequency_penalty: float | None = None, logit_bias: dict[str, float] | None = None, logprobs: bool | None = None, max_tokens: int | None = None, n: int | None = None, presence_penalty: float | None = None, seed: int | None = None, stop: str | list[str] | None = None, stream: bool | None = None, stream_options: dict[str, Any] | None = None, temperature: float | None = None, top_p: float | None = None, user: str | None = None, guided_choice: list[str] | None = None, prompt_logprobs: int | None = None, ) -> OpenAICompletion: provider_model_id = await self._get_provider_model_id(model) params = await prepare_openai_completion_params( model=provider_model_id, prompt=prompt, best_of=best_of, echo=echo, frequency_penalty=frequency_penalty, logit_bias=logit_bias, logprobs=logprobs, max_tokens=max_tokens, n=n, presence_penalty=presence_penalty, seed=seed, stop=stop, stream=stream, stream_options=stream_options, temperature=temperature, top_p=top_p, user=user, ) try: return await self._get_client(provider_model_id).completions.create(**params) except APIConnectionError as e: raise ConnectionError(f"Failed to connect to NVIDIA NIM at {self._config.url}: {e}") from e async def openai_chat_completion( self, model: str, messages: list[OpenAIMessageParam], frequency_penalty: float | None = None, function_call: str | dict[str, Any] | None = None, functions: list[dict[str, Any]] | None = None, logit_bias: dict[str, float] | None = None, logprobs: bool | None = None, max_completion_tokens: int | None = None, max_tokens: int | None = None, n: int | None = None, parallel_tool_calls: bool | None = None, presence_penalty: float | None = None, response_format: OpenAIResponseFormatParam | None = None, seed: int | None = None, stop: str | list[str] | None = None, stream: bool | None = None, stream_options: dict[str, Any] | None = None, temperature: float | None = None, tool_choice: str | dict[str, Any] | None = None, tools: list[dict[str, Any]] | None = None, top_logprobs: int | None = None, top_p: float | None = None, user: str | None = None, ) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]: provider_model_id = await self._get_provider_model_id(model) params = await prepare_openai_completion_params( model=provider_model_id, messages=messages, frequency_penalty=frequency_penalty, function_call=function_call, functions=functions, logit_bias=logit_bias, logprobs=logprobs, max_completion_tokens=max_completion_tokens, max_tokens=max_tokens, n=n, parallel_tool_calls=parallel_tool_calls, presence_penalty=presence_penalty, response_format=response_format, seed=seed, stop=stop, stream=stream, stream_options=stream_options, temperature=temperature, tool_choice=tool_choice, tools=tools, top_logprobs=top_logprobs, top_p=top_p, user=user, ) try: return await self._get_client(provider_model_id).chat.completions.create(**params) except APIConnectionError as e: raise ConnectionError(f"Failed to connect to NVIDIA NIM at {self._config.url}: {e}") from e async def register_model(self, model: Model) -> Model: """ Allow non-llama model registration. Non-llama model registration: API Catalogue models, post-training models, etc. client = LlamaStackAsLibraryClient("nvidia") client.models.register( model_id="mistralai/mixtral-8x7b-instruct-v0.1", model_type=ModelType.llm, provider_id="nvidia", provider_model_id="mistralai/mixtral-8x7b-instruct-v0.1" ) NOTE: Only supports models endpoints compatible with AsyncOpenAI base_url format. """ if model.model_type == ModelType.embedding: # embedding models are always registered by their provider model id and does not need to be mapped to a llama model provider_resource_id = model.provider_resource_id else: provider_resource_id = self.get_provider_model_id(model.provider_resource_id) if provider_resource_id: model.provider_resource_id = provider_resource_id else: llama_model = model.metadata.get("llama_model") existing_llama_model = self.get_llama_model(model.provider_resource_id) if existing_llama_model: if existing_llama_model != llama_model: raise ValueError( f"Provider model id '{model.provider_resource_id}' is already registered to a different llama model: '{existing_llama_model}'" ) else: # not llama model if llama_model in ALL_HUGGINGFACE_REPOS_TO_MODEL_DESCRIPTOR: self.provider_id_to_llama_model_map[model.provider_resource_id] = ( ALL_HUGGINGFACE_REPOS_TO_MODEL_DESCRIPTOR[llama_model] ) else: self.alias_to_provider_id_map[model.provider_model_id] = model.provider_model_id return model