# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. from collections.abc import AsyncGenerator, AsyncIterator from typing import Any from llama_stack_client import AsyncLlamaStackClient from llama_stack.apis.common.content_types import InterleavedContent from llama_stack.apis.inference import ( ChatCompletionResponse, ChatCompletionResponseStreamChunk, CompletionMessage, EmbeddingsResponse, EmbeddingTaskType, Inference, LogProbConfig, Message, OpenAIEmbeddingsResponse, ResponseFormat, SamplingParams, TextTruncation, ToolChoice, ToolConfig, ToolDefinition, ToolPromptFormat, ) from llama_stack.apis.inference.inference import ( OpenAIChatCompletion, OpenAIChatCompletionChunk, OpenAICompletion, OpenAIMessageParam, OpenAIResponseFormatParam, ) from llama_stack.apis.models import Model from llama_stack.distribution.library_client import convert_pydantic_to_json_value, convert_to_pydantic from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper from llama_stack.providers.utils.inference.openai_compat import prepare_openai_completion_params from .config import PassthroughImplConfig class PassthroughInferenceAdapter(Inference): def __init__(self, config: PassthroughImplConfig) -> None: ModelRegistryHelper.__init__(self, []) self.config = config async def initialize(self) -> None: pass async def shutdown(self) -> None: pass async def unregister_model(self, model_id: str) -> None: pass async def register_model(self, model: Model) -> Model: return model def _get_client(self) -> AsyncLlamaStackClient: passthrough_url = None passthrough_api_key = None provider_data = None if self.config.url is not None: passthrough_url = self.config.url else: provider_data = self.get_request_provider_data() if provider_data is None or not provider_data.passthrough_url: raise ValueError( 'Pass url of the passthrough endpoint in the header X-LlamaStack-Provider-Data as { "passthrough_url": }' ) passthrough_url = provider_data.passthrough_url if self.config.api_key is not None: passthrough_api_key = self.config.api_key.get_secret_value() else: provider_data = self.get_request_provider_data() if provider_data is None or not provider_data.passthrough_api_key: raise ValueError( 'Pass API Key for the passthrough endpoint in the header X-LlamaStack-Provider-Data as { "passthrough_api_key": }' ) passthrough_api_key = provider_data.passthrough_api_key return AsyncLlamaStackClient( base_url=passthrough_url, api_key=passthrough_api_key, provider_data=provider_data, ) async def completion( self, model_id: str, content: InterleavedContent, sampling_params: SamplingParams | None = None, response_format: ResponseFormat | None = None, stream: bool | None = False, logprobs: LogProbConfig | None = None, ) -> AsyncGenerator: if sampling_params is None: sampling_params = SamplingParams() client = self._get_client() model = await self.model_store.get_model(model_id) request_params = { "model_id": model.provider_resource_id, "content": content, "sampling_params": sampling_params, "response_format": response_format, "stream": stream, "logprobs": logprobs, } request_params = {key: value for key, value in request_params.items() if value is not None} # cast everything to json dict json_params = self.cast_value_to_json_dict(request_params) # only pass through the not None params return await client.inference.completion(**json_params) async def chat_completion( self, model_id: str, messages: list[Message], sampling_params: SamplingParams | None = None, tools: list[ToolDefinition] | None = None, tool_choice: ToolChoice | None = ToolChoice.auto, tool_prompt_format: ToolPromptFormat | None = None, response_format: ResponseFormat | None = None, stream: bool | None = False, logprobs: LogProbConfig | None = None, tool_config: ToolConfig | None = None, ) -> AsyncGenerator: if sampling_params is None: sampling_params = SamplingParams() model = await self.model_store.get_model(model_id) # TODO: revisit this remove tool_calls from messages logic for message in messages: if hasattr(message, "tool_calls"): message.tool_calls = None request_params = { "model_id": model.provider_resource_id, "messages": messages, "sampling_params": sampling_params, "tools": tools, "tool_choice": tool_choice, "tool_prompt_format": tool_prompt_format, "response_format": response_format, "stream": stream, "logprobs": logprobs, } # only pass through the not None params request_params = {key: value for key, value in request_params.items() if value is not None} # cast everything to json dict json_params = self.cast_value_to_json_dict(request_params) if stream: return self._stream_chat_completion(json_params) else: return await self._nonstream_chat_completion(json_params) async def _nonstream_chat_completion(self, json_params: dict[str, Any]) -> ChatCompletionResponse: client = self._get_client() response = await client.inference.chat_completion(**json_params) return ChatCompletionResponse( completion_message=CompletionMessage( content=response.completion_message.content.text, stop_reason=response.completion_message.stop_reason, tool_calls=response.completion_message.tool_calls, ), logprobs=response.logprobs, ) async def _stream_chat_completion(self, json_params: dict[str, Any]) -> AsyncGenerator: client = self._get_client() stream_response = await client.inference.chat_completion(**json_params) async for chunk in stream_response: chunk = chunk.to_dict() # temporary hack to remove the metrics from the response chunk["metrics"] = [] chunk = convert_to_pydantic(ChatCompletionResponseStreamChunk, chunk) yield chunk async def embeddings( self, model_id: str, contents: list[InterleavedContent], text_truncation: TextTruncation | None = TextTruncation.none, output_dimension: int | None = None, task_type: EmbeddingTaskType | None = None, ) -> EmbeddingsResponse: client = self._get_client() model = await self.model_store.get_model(model_id) return await client.inference.embeddings( model_id=model.provider_resource_id, contents=contents, text_truncation=text_truncation, output_dimension=output_dimension, task_type=task_type, ) async def openai_embeddings( self, model: str, input: str | list[str], encoding_format: str | None = "float", dimensions: int | None = None, user: str | None = None, ) -> OpenAIEmbeddingsResponse: raise NotImplementedError() async def openai_completion( self, model: str, prompt: str | list[str] | list[int] | list[list[int]], best_of: int | None = None, echo: bool | None = None, frequency_penalty: float | None = None, logit_bias: dict[str, float] | None = None, logprobs: bool | None = None, max_tokens: int | None = None, n: int | None = None, presence_penalty: float | None = None, seed: int | None = None, stop: str | list[str] | None = None, stream: bool | None = None, stream_options: dict[str, Any] | None = None, temperature: float | None = None, top_p: float | None = None, user: str | None = None, guided_choice: list[str] | None = None, prompt_logprobs: int | None = None, ) -> OpenAICompletion: client = self._get_client() model_obj = await self.model_store.get_model(model) params = await prepare_openai_completion_params( model=model_obj.provider_resource_id, prompt=prompt, best_of=best_of, echo=echo, frequency_penalty=frequency_penalty, logit_bias=logit_bias, logprobs=logprobs, max_tokens=max_tokens, n=n, presence_penalty=presence_penalty, seed=seed, stop=stop, stream=stream, stream_options=stream_options, temperature=temperature, top_p=top_p, user=user, guided_choice=guided_choice, prompt_logprobs=prompt_logprobs, ) return await client.inference.openai_completion(**params) async def openai_chat_completion( self, model: str, messages: list[OpenAIMessageParam], frequency_penalty: float | None = None, function_call: str | dict[str, Any] | None = None, functions: list[dict[str, Any]] | None = None, logit_bias: dict[str, float] | None = None, logprobs: bool | None = None, max_completion_tokens: int | None = None, max_tokens: int | None = None, n: int | None = None, parallel_tool_calls: bool | None = None, presence_penalty: float | None = None, response_format: OpenAIResponseFormatParam | None = None, seed: int | None = None, stop: str | list[str] | None = None, stream: bool | None = None, stream_options: dict[str, Any] | None = None, temperature: float | None = None, tool_choice: str | dict[str, Any] | None = None, tools: list[dict[str, Any]] | None = None, top_logprobs: int | None = None, top_p: float | None = None, user: str | None = None, ) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]: client = self._get_client() model_obj = await self.model_store.get_model(model) params = await prepare_openai_completion_params( model=model_obj.provider_resource_id, messages=messages, frequency_penalty=frequency_penalty, function_call=function_call, functions=functions, logit_bias=logit_bias, logprobs=logprobs, max_completion_tokens=max_completion_tokens, max_tokens=max_tokens, n=n, parallel_tool_calls=parallel_tool_calls, presence_penalty=presence_penalty, response_format=response_format, seed=seed, stop=stop, stream=stream, stream_options=stream_options, temperature=temperature, tool_choice=tool_choice, tools=tools, top_logprobs=top_logprobs, top_p=top_p, user=user, ) return await client.inference.openai_chat_completion(**params) def cast_value_to_json_dict(self, request_params: dict[str, Any]) -> dict[str, Any]: json_params = {} for key, value in request_params.items(): json_input = convert_pydantic_to_json_value(value) if isinstance(json_input, dict): json_input = {k: v for k, v in json_input.items() if v is not None} elif isinstance(json_input, list): json_input = [x for x in json_input if x is not None] new_input = [] for x in json_input: if isinstance(x, dict): x = {k: v for k, v in x.items() if v is not None} new_input.append(x) json_input = new_input json_params[key] = json_input return json_params