# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. from collections.abc import AsyncGenerator from openai import OpenAI from llama_stack.apis.inference import * # noqa: F403 from llama_stack.apis.inference.inference import OpenAIEmbeddingsResponse # from llama_stack.providers.datatypes import ModelsProtocolPrivate from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper from llama_stack.providers.utils.inference.openai_compat import ( OpenAIChatCompletionToLlamaStackMixin, OpenAICompletionToLlamaStackMixin, get_sampling_options, process_chat_completion_response, process_chat_completion_stream_response, ) from llama_stack.providers.utils.inference.prompt_adapter import ( chat_completion_request_to_prompt, ) from .config import RunpodImplConfig RUNPOD_SUPPORTED_MODELS = { "Llama3.1-8B": "meta-llama/Llama-3.1-8B", "Llama3.1-70B": "meta-llama/Llama-3.1-70B", "Llama3.1-405B:bf16-mp8": "meta-llama/Llama-3.1-405B", "Llama3.1-405B": "meta-llama/Llama-3.1-405B-FP8", "Llama3.1-405B:bf16-mp16": "meta-llama/Llama-3.1-405B", "Llama3.1-8B-Instruct": "meta-llama/Llama-3.1-8B-Instruct", "Llama3.1-70B-Instruct": "meta-llama/Llama-3.1-70B-Instruct", "Llama3.1-405B-Instruct:bf16-mp8": "meta-llama/Llama-3.1-405B-Instruct", "Llama3.1-405B-Instruct": "meta-llama/Llama-3.1-405B-Instruct-FP8", "Llama3.1-405B-Instruct:bf16-mp16": "meta-llama/Llama-3.1-405B-Instruct", "Llama3.2-1B": "meta-llama/Llama-3.2-1B", "Llama3.2-3B": "meta-llama/Llama-3.2-3B", } class RunpodInferenceAdapter( ModelRegistryHelper, Inference, OpenAIChatCompletionToLlamaStackMixin, OpenAICompletionToLlamaStackMixin, ): def __init__(self, config: RunpodImplConfig) -> None: ModelRegistryHelper.__init__(self, stack_to_provider_models_map=RUNPOD_SUPPORTED_MODELS) self.config = config async def initialize(self) -> None: return async def shutdown(self) -> None: pass async def completion( self, model: str, content: InterleavedContent, sampling_params: Optional[SamplingParams] = None, response_format: Optional[ResponseFormat] = None, stream: Optional[bool] = False, logprobs: Optional[LogProbConfig] = None, ) -> AsyncGenerator: raise NotImplementedError() async def chat_completion( self, model: str, messages: List[Message], sampling_params: Optional[SamplingParams] = None, response_format: Optional[ResponseFormat] = None, tools: Optional[List[ToolDefinition]] = None, tool_choice: Optional[ToolChoice] = ToolChoice.auto, tool_prompt_format: Optional[ToolPromptFormat] = None, stream: Optional[bool] = False, logprobs: Optional[LogProbConfig] = None, tool_config: Optional[ToolConfig] = None, ) -> AsyncGenerator: if sampling_params is None: sampling_params = SamplingParams() request = ChatCompletionRequest( model=model, messages=messages, sampling_params=sampling_params, tools=tools or [], stream=stream, logprobs=logprobs, tool_config=tool_config, ) client = OpenAI(base_url=self.config.url, api_key=self.config.api_token) if stream: return self._stream_chat_completion(request, client) else: return await self._nonstream_chat_completion(request, client) async def _nonstream_chat_completion( self, request: ChatCompletionRequest, client: OpenAI ) -> ChatCompletionResponse: params = self._get_params(request) r = client.completions.create(**params) return process_chat_completion_response(r, request) async def _stream_chat_completion(self, request: ChatCompletionRequest, client: OpenAI) -> AsyncGenerator: params = self._get_params(request) async def _to_async_generator(): s = client.completions.create(**params) for chunk in s: yield chunk stream = _to_async_generator() async for chunk in process_chat_completion_stream_response(stream, request): yield chunk def _get_params(self, request: ChatCompletionRequest) -> dict: return { "model": self.map_to_provider_model(request.model), "prompt": chat_completion_request_to_prompt(request), "stream": request.stream, **get_sampling_options(request.sampling_params), } async def embeddings( self, model: str, contents: List[str] | List[InterleavedContentItem], text_truncation: Optional[TextTruncation] = TextTruncation.none, output_dimension: Optional[int] = None, task_type: Optional[EmbeddingTaskType] = None, ) -> EmbeddingsResponse: raise NotImplementedError() async def openai_embeddings( self, model: str, input: str | list[str], encoding_format: str | None = "float", dimensions: int | None = None, user: str | None = None, ) -> OpenAIEmbeddingsResponse: raise NotImplementedError()