# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. import logging from collections.abc import AsyncGenerator from huggingface_hub import AsyncInferenceClient, HfApi from llama_stack.apis.common.content_types import ( InterleavedContent, InterleavedContentItem, ) from llama_stack.apis.inference import ( ChatCompletionRequest, ChatCompletionResponse, CompletionRequest, EmbeddingsResponse, EmbeddingTaskType, Inference, LogProbConfig, Message, OpenAIEmbeddingsResponse, ResponseFormat, ResponseFormatType, SamplingParams, TextTruncation, ToolChoice, ToolConfig, ToolDefinition, ToolPromptFormat, ) from llama_stack.apis.models import Model from llama_stack.models.llama.sku_list import all_registered_models from llama_stack.providers.datatypes import ModelsProtocolPrivate from llama_stack.providers.utils.inference.model_registry import ( ModelRegistryHelper, build_hf_repo_model_entry, ) from llama_stack.providers.utils.inference.openai_compat import ( OpenAIChatCompletionToLlamaStackMixin, OpenAICompatCompletionChoice, OpenAICompatCompletionResponse, OpenAICompletionToLlamaStackMixin, get_sampling_options, process_chat_completion_response, process_chat_completion_stream_response, process_completion_response, process_completion_stream_response, ) from llama_stack.providers.utils.inference.prompt_adapter import ( chat_completion_request_to_model_input_info, completion_request_to_prompt_model_input_info, ) from .config import InferenceAPIImplConfig, InferenceEndpointImplConfig, TGIImplConfig log = logging.getLogger(__name__) def build_hf_repo_model_entries(): return [ build_hf_repo_model_entry( model.huggingface_repo, model.descriptor(), ) for model in all_registered_models() if model.huggingface_repo ] class _HfAdapter( Inference, OpenAIChatCompletionToLlamaStackMixin, OpenAICompletionToLlamaStackMixin, ModelsProtocolPrivate, ): client: AsyncInferenceClient max_tokens: int model_id: str def __init__(self) -> None: self.register_helper = ModelRegistryHelper(build_hf_repo_model_entries()) self.huggingface_repo_to_llama_model_id = { model.huggingface_repo: model.descriptor() for model in all_registered_models() if model.huggingface_repo } async def shutdown(self) -> None: pass async def register_model(self, model: Model) -> Model: model = await self.register_helper.register_model(model) if model.provider_resource_id != self.model_id: raise ValueError( f"Model {model.provider_resource_id} does not match the model {self.model_id} served by TGI." ) return model async def unregister_model(self, model_id: str) -> None: pass async def completion( self, model_id: str, content: InterleavedContent, sampling_params: SamplingParams | None = None, response_format: ResponseFormat | None = None, stream: bool | None = False, logprobs: LogProbConfig | None = None, ) -> AsyncGenerator: if sampling_params is None: sampling_params = SamplingParams() model = await self.model_store.get_model(model_id) request = CompletionRequest( model=model.provider_resource_id, content=content, sampling_params=sampling_params, response_format=response_format, stream=stream, logprobs=logprobs, ) if stream: return self._stream_completion(request) else: return await self._nonstream_completion(request) def _get_max_new_tokens(self, sampling_params, input_tokens): return min( sampling_params.max_tokens or (self.max_tokens - input_tokens), self.max_tokens - input_tokens - 1, ) def _build_options( self, sampling_params: SamplingParams | None = None, fmt: ResponseFormat = None, ): options = get_sampling_options(sampling_params) # TGI does not support temperature=0 when using greedy sampling # We set it to 1e-3 instead, anything lower outputs garbage from TGI # We can use top_p sampling strategy to specify lower temperature if abs(options["temperature"]) < 1e-10: options["temperature"] = 1e-3 # delete key "max_tokens" from options since its not supported by the API options.pop("max_tokens", None) if fmt: if fmt.type == ResponseFormatType.json_schema.value: options["grammar"] = { "type": "json", "value": fmt.json_schema, } elif fmt.type == ResponseFormatType.grammar.value: raise ValueError("Grammar response format not supported yet") else: raise ValueError(f"Unexpected response format: {fmt.type}") return options async def _get_params_for_completion(self, request: CompletionRequest) -> dict: prompt, input_tokens = await completion_request_to_prompt_model_input_info(request) return dict( prompt=prompt, stream=request.stream, details=True, max_new_tokens=self._get_max_new_tokens(request.sampling_params, input_tokens), stop_sequences=["<|eom_id|>", "<|eot_id|>"], **self._build_options(request.sampling_params, request.response_format), ) async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator: params = await self._get_params_for_completion(request) async def _generate_and_convert_to_openai_compat(): s = await self.client.text_generation(**params) async for chunk in s: token_result = chunk.token finish_reason = None if chunk.details: finish_reason = chunk.details.finish_reason choice = OpenAICompatCompletionChoice(text=token_result.text, finish_reason=finish_reason) yield OpenAICompatCompletionResponse( choices=[choice], ) stream = _generate_and_convert_to_openai_compat() async for chunk in process_completion_stream_response(stream): yield chunk async def _nonstream_completion(self, request: CompletionRequest) -> AsyncGenerator: params = await self._get_params_for_completion(request) r = await self.client.text_generation(**params) choice = OpenAICompatCompletionChoice( finish_reason=r.details.finish_reason, text="".join(t.text for t in r.details.tokens), ) response = OpenAICompatCompletionResponse( choices=[choice], ) return process_completion_response(response) async def chat_completion( self, model_id: str, messages: list[Message], sampling_params: SamplingParams | None = None, tools: list[ToolDefinition] | None = None, tool_choice: ToolChoice | None = ToolChoice.auto, tool_prompt_format: ToolPromptFormat | None = None, response_format: ResponseFormat | None = None, stream: bool | None = False, logprobs: LogProbConfig | None = None, tool_config: ToolConfig | None = None, ) -> AsyncGenerator: if sampling_params is None: sampling_params = SamplingParams() model = await self.model_store.get_model(model_id) request = ChatCompletionRequest( model=model.provider_resource_id, messages=messages, sampling_params=sampling_params, tools=tools or [], response_format=response_format, stream=stream, logprobs=logprobs, tool_config=tool_config, ) if stream: return self._stream_chat_completion(request) else: return await self._nonstream_chat_completion(request) async def _nonstream_chat_completion(self, request: ChatCompletionRequest) -> ChatCompletionResponse: params = await self._get_params(request) r = await self.client.text_generation(**params) choice = OpenAICompatCompletionChoice( finish_reason=r.details.finish_reason, text="".join(t.text for t in r.details.tokens), ) response = OpenAICompatCompletionResponse( choices=[choice], ) return process_chat_completion_response(response, request) async def _stream_chat_completion(self, request: ChatCompletionRequest) -> AsyncGenerator: params = await self._get_params(request) async def _generate_and_convert_to_openai_compat(): s = await self.client.text_generation(**params) async for chunk in s: token_result = chunk.token choice = OpenAICompatCompletionChoice(text=token_result.text) yield OpenAICompatCompletionResponse( choices=[choice], ) stream = _generate_and_convert_to_openai_compat() async for chunk in process_chat_completion_stream_response(stream, request): yield chunk async def _get_params(self, request: ChatCompletionRequest) -> dict: prompt, input_tokens = await chat_completion_request_to_model_input_info( request, self.register_helper.get_llama_model(request.model) ) return dict( prompt=prompt, stream=request.stream, details=True, max_new_tokens=self._get_max_new_tokens(request.sampling_params, input_tokens), stop_sequences=["<|eom_id|>", "<|eot_id|>"], **self._build_options(request.sampling_params, request.response_format), ) async def embeddings( self, model_id: str, contents: list[str] | list[InterleavedContentItem], text_truncation: TextTruncation | None = TextTruncation.none, output_dimension: int | None = None, task_type: EmbeddingTaskType | None = None, ) -> EmbeddingsResponse: raise NotImplementedError() async def openai_embeddings( self, model: str, input: str | list[str], encoding_format: str | None = "float", dimensions: int | None = None, user: str | None = None, ) -> OpenAIEmbeddingsResponse: raise NotImplementedError() class TGIAdapter(_HfAdapter): async def initialize(self, config: TGIImplConfig) -> None: log.info(f"Initializing TGI client with url={config.url}") self.client = AsyncInferenceClient( model=config.url, ) endpoint_info = await self.client.get_endpoint_info() self.max_tokens = endpoint_info["max_total_tokens"] self.model_id = endpoint_info["model_id"] class InferenceAPIAdapter(_HfAdapter): async def initialize(self, config: InferenceAPIImplConfig) -> None: self.client = AsyncInferenceClient(model=config.huggingface_repo, token=config.api_token.get_secret_value()) endpoint_info = await self.client.get_endpoint_info() self.max_tokens = endpoint_info["max_total_tokens"] self.model_id = endpoint_info["model_id"] class InferenceEndpointAdapter(_HfAdapter): async def initialize(self, config: InferenceEndpointImplConfig) -> None: # Get the inference endpoint details api = HfApi(token=config.api_token.get_secret_value()) endpoint = api.get_inference_endpoint(config.endpoint_name) # Wait for the endpoint to be ready (if not already) endpoint.wait(timeout=60) # Initialize the adapter self.client = endpoint.async_client self.model_id = endpoint.repository self.max_tokens = int(endpoint.raw["model"]["image"]["custom"]["env"]["MAX_TOTAL_TOKENS"])