# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. import base64 import struct import pytest from openai import OpenAI from llama_stack.distribution.library_client import LlamaStackAsLibraryClient def decode_base64_to_floats(base64_string: str) -> list[float]: """Helper function to decode base64 string to list of float32 values.""" embedding_bytes = base64.b64decode(base64_string) float_count = len(embedding_bytes) // 4 # 4 bytes per float32 embedding_floats = struct.unpack(f"{float_count}f", embedding_bytes) return list(embedding_floats) def provider_from_model(client_with_models, model_id): models = {m.identifier: m for m in client_with_models.models.list()} models.update({m.provider_resource_id: m for m in client_with_models.models.list()}) provider_id = models[model_id].provider_id providers = {p.provider_id: p for p in client_with_models.providers.list()} return providers[provider_id] def skip_if_model_doesnt_support_variable_dimensions(model_id): if "text-embedding-3" not in model_id: pytest.skip("{model_id} does not support variable output embedding dimensions") def skip_if_model_doesnt_support_openai_embeddings(client_with_models, model_id): if isinstance(client_with_models, LlamaStackAsLibraryClient): pytest.skip("OpenAI embeddings are not supported when testing with library client yet.") provider = provider_from_model(client_with_models, model_id) if provider.provider_type in ( "inline::meta-reference", "remote::bedrock", "remote::cerebras", "remote::databricks", "remote::runpod", "remote::sambanova", "remote::tgi", "remote::ollama", ): pytest.skip(f"Model {model_id} hosted by {provider.provider_type} doesn't support OpenAI embeddings.") @pytest.fixture def openai_client(client_with_models): base_url = f"{client_with_models.base_url}/v1/openai/v1" return OpenAI(base_url=base_url, api_key="fake") def test_openai_embeddings_single_string(openai_client, client_with_models, embedding_model_id): """Test OpenAI embeddings endpoint with a single string input.""" skip_if_model_doesnt_support_openai_embeddings(client_with_models, embedding_model_id) input_text = "Hello, world!" response = openai_client.embeddings.create( model=embedding_model_id, input=input_text, encoding_format="float", ) assert response.object == "list" assert response.model == embedding_model_id assert len(response.data) == 1 assert response.data[0].object == "embedding" assert response.data[0].index == 0 assert isinstance(response.data[0].embedding, list) assert len(response.data[0].embedding) > 0 assert all(isinstance(x, float) for x in response.data[0].embedding) def test_openai_embeddings_multiple_strings(openai_client, client_with_models, embedding_model_id): """Test OpenAI embeddings endpoint with multiple string inputs.""" skip_if_model_doesnt_support_openai_embeddings(client_with_models, embedding_model_id) input_texts = ["Hello, world!", "How are you today?", "This is a test."] response = openai_client.embeddings.create( model=embedding_model_id, input=input_texts, ) assert response.object == "list" assert response.model == embedding_model_id assert len(response.data) == len(input_texts) for i, embedding_data in enumerate(response.data): assert embedding_data.object == "embedding" assert embedding_data.index == i assert isinstance(embedding_data.embedding, list) assert len(embedding_data.embedding) > 0 assert all(isinstance(x, float) for x in embedding_data.embedding) def test_openai_embeddings_with_encoding_format_float(openai_client, client_with_models, embedding_model_id): """Test OpenAI embeddings endpoint with float encoding format.""" skip_if_model_doesnt_support_openai_embeddings(client_with_models, embedding_model_id) input_text = "Test encoding format" response = openai_client.embeddings.create( model=embedding_model_id, input=input_text, encoding_format="float", ) assert response.object == "list" assert len(response.data) == 1 assert isinstance(response.data[0].embedding, list) assert all(isinstance(x, float) for x in response.data[0].embedding) def test_openai_embeddings_with_dimensions(openai_client, client_with_models, embedding_model_id): """Test OpenAI embeddings endpoint with custom dimensions parameter.""" skip_if_model_doesnt_support_openai_embeddings(client_with_models, embedding_model_id) skip_if_model_doesnt_support_variable_dimensions(embedding_model_id) input_text = "Test dimensions parameter" dimensions = 16 response = openai_client.embeddings.create( model=embedding_model_id, input=input_text, dimensions=dimensions, ) assert response.object == "list" assert len(response.data) == 1 # Note: Not all models support custom dimensions, so we don't assert the exact dimension assert isinstance(response.data[0].embedding, list) assert len(response.data[0].embedding) > 0 def test_openai_embeddings_with_user_parameter(openai_client, client_with_models, embedding_model_id): """Test OpenAI embeddings endpoint with user parameter.""" skip_if_model_doesnt_support_openai_embeddings(client_with_models, embedding_model_id) input_text = "Test user parameter" user_id = "test-user-123" response = openai_client.embeddings.create( model=embedding_model_id, input=input_text, user=user_id, ) assert response.object == "list" assert len(response.data) == 1 assert isinstance(response.data[0].embedding, list) assert len(response.data[0].embedding) > 0 def test_openai_embeddings_empty_list_error(openai_client, client_with_models, embedding_model_id): """Test that empty list input raises an appropriate error.""" skip_if_model_doesnt_support_openai_embeddings(client_with_models, embedding_model_id) with pytest.raises(Exception): # noqa: B017 openai_client.embeddings.create( model=embedding_model_id, input=[], ) def test_openai_embeddings_invalid_model_error(openai_client, client_with_models, embedding_model_id): """Test that invalid model ID raises an appropriate error.""" skip_if_model_doesnt_support_openai_embeddings(client_with_models, embedding_model_id) with pytest.raises(Exception): # noqa: B017 openai_client.embeddings.create( model="invalid-model-id", input="Test text", ) def test_openai_embeddings_different_inputs_different_outputs(openai_client, client_with_models, embedding_model_id): """Test that different inputs produce different embeddings.""" skip_if_model_doesnt_support_openai_embeddings(client_with_models, embedding_model_id) input_text1 = "This is the first text" input_text2 = "This is completely different content" response1 = openai_client.embeddings.create( model=embedding_model_id, input=input_text1, ) response2 = openai_client.embeddings.create( model=embedding_model_id, input=input_text2, ) embedding1 = response1.data[0].embedding embedding2 = response2.data[0].embedding assert len(embedding1) == len(embedding2) # Embeddings should be different for different inputs assert embedding1 != embedding2 def test_openai_embeddings_with_encoding_format_base64(openai_client, client_with_models, embedding_model_id): """Test OpenAI embeddings endpoint with base64 encoding format.""" skip_if_model_doesnt_support_openai_embeddings(client_with_models, embedding_model_id) skip_if_model_doesnt_support_variable_dimensions(embedding_model_id) input_text = "Test base64 encoding format" dimensions = 12 response = openai_client.embeddings.create( model=embedding_model_id, input=input_text, encoding_format="base64", dimensions=dimensions, ) # Validate response structure assert response.object == "list" assert len(response.data) == 1 # With base64 encoding, embedding should be a string, not a list embedding_data = response.data[0] assert embedding_data.object == "embedding" assert embedding_data.index == 0 assert isinstance(embedding_data.embedding, str) # Verify it's valid base64 and decode to floats embedding_floats = decode_base64_to_floats(embedding_data.embedding) # Verify we got valid floats assert len(embedding_floats) == dimensions, f"Got embedding length {len(embedding_floats)}, expected {dimensions}" assert all(isinstance(x, float) for x in embedding_floats) def test_openai_embeddings_base64_batch_processing(openai_client, client_with_models, embedding_model_id): """Test OpenAI embeddings endpoint with base64 encoding for batch processing.""" skip_if_model_doesnt_support_openai_embeddings(client_with_models, embedding_model_id) input_texts = ["First text for base64", "Second text for base64", "Third text for base64"] response = openai_client.embeddings.create( model=embedding_model_id, input=input_texts, encoding_format="base64", ) # Validate response structure assert response.object == "list" assert response.model == embedding_model_id assert len(response.data) == len(input_texts) # Validate each embedding in the batch embedding_dimensions = [] for i, embedding_data in enumerate(response.data): assert embedding_data.object == "embedding" assert embedding_data.index == i # With base64 encoding, embedding should be a string, not a list assert isinstance(embedding_data.embedding, str) embedding_floats = decode_base64_to_floats(embedding_data.embedding) assert len(embedding_floats) > 0 assert all(isinstance(x, float) for x in embedding_floats) embedding_dimensions.append(len(embedding_floats)) # All embeddings should have the same dimensionality assert all(dim == embedding_dimensions[0] for dim in embedding_dimensions)