--- orphan: true --- # TGI Distribution ```{toctree} :maxdepth: 2 :hidden: self ``` The `llamastack/distribution-{{ name }}` distribution consists of the following provider configurations. {{ providers_table }} You can use this distribution if you have GPUs and want to run an independent TGI server container for running inference. {% if run_config_env_vars %} ### Environment Variables The following environment variables can be configured: {% for var, (default_value, description) in run_config_env_vars.items() %} - `{{ var }}`: {{ description }} (default: `{{ default_value }}`) {% endfor %} {% endif %} ## Setting up TGI server Please check the [TGI Getting Started Guide](https://github.com/huggingface/text-generation-inference?tab=readme-ov-file#get-started) to get a TGI endpoint. Here is a sample script to start a TGI server locally via Docker: ```bash export INFERENCE_PORT=8080 export INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct export CUDA_VISIBLE_DEVICES=0 docker run --rm -it \ -v $HOME/.cache/huggingface:/data \ -p $INFERENCE_PORT:$INFERENCE_PORT \ --gpus $CUDA_VISIBLE_DEVICES \ ghcr.io/huggingface/text-generation-inference:2.3.1 \ --dtype bfloat16 \ --usage-stats off \ --sharded false \ --cuda-memory-fraction 0.7 \ --model-id $INFERENCE_MODEL \ --port $INFERENCE_PORT ``` If you are using Llama Stack Safety / Shield APIs, then you will need to also run another instance of a TGI with a corresponding safety model like `meta-llama/Llama-Guard-3-1B` using a script like: ```bash export SAFETY_PORT=8081 export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B export CUDA_VISIBLE_DEVICES=1 docker run --rm -it \ -v $HOME/.cache/huggingface:/data \ -p $SAFETY_PORT:$SAFETY_PORT \ --gpus $CUDA_VISIBLE_DEVICES \ ghcr.io/huggingface/text-generation-inference:2.3.1 \ --dtype bfloat16 \ --usage-stats off \ --sharded false \ --model-id $SAFETY_MODEL \ --port $SAFETY_PORT ``` ## Running Llama Stack Now you are ready to run Llama Stack with TGI as the inference provider. You can do this via Conda (build code) or Docker which has a pre-built image. ### Via Docker This method allows you to get started quickly without having to build the distribution code. ```bash LLAMA_STACK_PORT=5001 docker run \ -it \ -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \ llamastack/distribution-{{ name }} \ --port $LLAMA_STACK_PORT \ --env INFERENCE_MODEL=$INFERENCE_MODEL \ --env TGI_URL=http://host.docker.internal:$INFERENCE_PORT ``` If you are using Llama Stack Safety / Shield APIs, use: ```bash docker run \ -it \ -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \ -v ./run-with-safety.yaml:/root/my-run.yaml \ llamastack/distribution-{{ name }} \ --yaml-config /root/my-run.yaml \ --port $LLAMA_STACK_PORT \ --env INFERENCE_MODEL=$INFERENCE_MODEL \ --env TGI_URL=http://host.docker.internal:$INFERENCE_PORT \ --env SAFETY_MODEL=$SAFETY_MODEL \ --env TGI_SAFETY_URL=http://host.docker.internal:$SAFETY_PORT ``` ### Via Conda Make sure you have done `pip install llama-stack` and have the Llama Stack CLI available. ```bash llama stack build --template {{ name }} --image-type conda llama stack run ./run.yaml --port $LLAMA_STACK_PORT \ --env INFERENCE_MODEL=$INFERENCE_MODEL \ --env TGI_URL=http://127.0.0.1:$INFERENCE_PORT ``` If you are using Llama Stack Safety / Shield APIs, use: ```bash llama stack run ./run-with-safety.yaml \ --port $LLAMA_STACK_PORT \ --env INFERENCE_MODEL=$INFERENCE_MODEL \ --env TGI_URL=http://127.0.0.1:$INFERENCE_PORT \ --env SAFETY_MODEL=$SAFETY_MODEL \ --env TGI_SAFETY_URL=http://127.0.0.1:$SAFETY_PORT ```