# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. import os import pytest import pytest_asyncio from llama_stack.apis.memory import * # noqa: F403 from llama_stack.distribution.datatypes import * # noqa: F403 from llama_stack.providers.tests.resolver import resolve_impls_for_test # How to run this test: # # 1. Ensure you have a conda with the right dependencies installed. This is a bit tricky # since it depends on the provider you are testing. On top of that you need # `pytest` and `pytest-asyncio` installed. # # 2. Copy and modify the provider_config_example.yaml depending on the provider you are testing. # # 3. Run: # # ```bash # PROVIDER_ID= \ # PROVIDER_CONFIG=provider_config.yaml \ # pytest -s llama_stack/providers/tests/memory/test_memory.py \ # --tb=short --disable-warnings # ``` @pytest_asyncio.fixture(scope="session") async def memory_settings(): impls = await resolve_impls_for_test( Api.memory, ) return { "memory_impl": impls[Api.memory], "memory_banks_impl": impls[Api.memory_banks], } @pytest.fixture def sample_documents(): return [ MemoryBankDocument( document_id="doc1", content="Python is a high-level programming language.", metadata={"category": "programming", "difficulty": "beginner"}, ), MemoryBankDocument( document_id="doc2", content="Machine learning is a subset of artificial intelligence.", metadata={"category": "AI", "difficulty": "advanced"}, ), MemoryBankDocument( document_id="doc3", content="Data structures are fundamental to computer science.", metadata={"category": "computer science", "difficulty": "intermediate"}, ), MemoryBankDocument( document_id="doc4", content="Neural networks are inspired by biological neural networks.", metadata={"category": "AI", "difficulty": "advanced"}, ), ] async def register_memory_bank(banks_impl: MemoryBanks): bank = VectorMemoryBankDef( identifier="test_bank", embedding_model="all-MiniLM-L6-v2", chunk_size_in_tokens=512, overlap_size_in_tokens=64, provider_id=os.environ["PROVIDER_ID"], ) await banks_impl.register_memory_bank(bank) @pytest.mark.asyncio async def test_banks_list(memory_settings): # NOTE: this needs you to ensure that you are starting from a clean state # but so far we don't have an unregister API unfortunately, so be careful banks_impl = memory_settings["memory_banks_impl"] response = await banks_impl.list_memory_banks() assert isinstance(response, list) assert len(response) == 0 @pytest.mark.asyncio async def test_banks_register(memory_settings): # NOTE: this needs you to ensure that you are starting from a clean state # but so far we don't have an unregister API unfortunately, so be careful banks_impl = memory_settings["memory_banks_impl"] bank = VectorMemoryBankDef( identifier="test_bank_no_provider", embedding_model="all-MiniLM-L6-v2", chunk_size_in_tokens=512, overlap_size_in_tokens=64, ) await banks_impl.register_memory_bank(bank) response = await banks_impl.list_memory_banks() assert isinstance(response, list) assert len(response) == 1 # register same memory bank with same id again will fail await banks_impl.register_memory_bank(bank) response = await banks_impl.list_memory_banks() assert isinstance(response, list) assert len(response) == 1 @pytest.mark.asyncio async def test_query_documents(memory_settings, sample_documents): memory_impl = memory_settings["memory_impl"] banks_impl = memory_settings["memory_banks_impl"] with pytest.raises(ValueError): await memory_impl.insert_documents("test_bank", sample_documents) await register_memory_bank(banks_impl) await memory_impl.insert_documents("test_bank", sample_documents) query1 = "programming language" response1 = await memory_impl.query_documents("test_bank", query1) assert_valid_response(response1) assert any("Python" in chunk.content for chunk in response1.chunks) # Test case 3: Query with semantic similarity query3 = "AI and brain-inspired computing" response3 = await memory_impl.query_documents("test_bank", query3) assert_valid_response(response3) assert any("neural networks" in chunk.content.lower() for chunk in response3.chunks) # Test case 4: Query with limit on number of results query4 = "computer" params4 = {"max_chunks": 2} response4 = await memory_impl.query_documents("test_bank", query4, params4) assert_valid_response(response4) assert len(response4.chunks) <= 2 # Test case 5: Query with threshold on similarity score query5 = "quantum computing" # Not directly related to any document params5 = {"score_threshold": 0.5} response5 = await memory_impl.query_documents("test_bank", query5, params5) assert_valid_response(response5) assert all(score >= 0.5 for score in response5.scores) def assert_valid_response(response: QueryDocumentsResponse): assert isinstance(response, QueryDocumentsResponse) assert len(response.chunks) > 0 assert len(response.scores) > 0 assert len(response.chunks) == len(response.scores) for chunk in response.chunks: assert isinstance(chunk.content, str) assert chunk.document_id is not None