# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. # Copyright (c) Meta Platforms, Inc. and affiliates. # This software may be used and distributed in accordance with the terms of the Llama 3 Community License Agreement. import json import math import os import sys import time from pathlib import Path from typing import Generator, List, Optional, Tuple, Union import torch import torch.nn.functional as F from fairscale.nn.model_parallel.initialize import ( get_model_parallel_rank, initialize_model_parallel, model_parallel_is_initialized, ) from llama_models.llama3.api.args import ModelArgs from llama_models.llama3.api.chat_format import ChatFormat, ModelInput from llama_models.llama3.api.tokenizer import Tokenizer from llama_models.llama3.reference_impl.model import Transformer from llama_models.llama3.reference_impl.multimodal.model import ( CrossAttentionTransformer, ) from llama_models.sku_list import resolve_model from pydantic import BaseModel from termcolor import cprint from llama_stack.apis.inference import * # noqa: F403 from lmformatenforcer import JsonSchemaParser, TokenEnforcer, TokenEnforcerTokenizerData from llama_stack.distribution.utils.model_utils import model_local_dir from llama_stack.providers.utils.inference.prompt_adapter import ( chat_completion_request_to_messages, ) from .config import ( Fp8QuantizationConfig, Int4QuantizationConfig, MetaReferenceInferenceConfig, MetaReferenceQuantizedInferenceConfig, ) def model_checkpoint_dir(model) -> str: checkpoint_dir = Path(model_local_dir(model.descriptor())) paths = [Path(checkpoint_dir / f"consolidated.{ext}") for ext in ["pth", "00.pth"]] if not any(p.exists() for p in paths): checkpoint_dir = checkpoint_dir / "original" assert checkpoint_dir.exists(), ( f"Could not find checkpoints in: {model_local_dir(model.descriptor())}. " f"Please download model using `llama download --model-id {model.descriptor()}`" ) return str(checkpoint_dir) class TokenResult(BaseModel): token: int text: str logprobs: Optional[List[float]] = None class Llama: @staticmethod def build( config: Union[ MetaReferenceInferenceConfig, MetaReferenceQuantizedInferenceConfig ], ): """ Build a Llama instance by initializing and loading a model checkpoint. Note: This method initializes the distributed process group, sets the device to CUDA, and loads the pre-trained model and tokenizer. """ model = resolve_model(config.model) if not torch.distributed.is_initialized(): torch.distributed.init_process_group("nccl") model_parallel_size = config.model_parallel_size if not model_parallel_is_initialized(): initialize_model_parallel(model_parallel_size) local_rank = int(os.environ.get("LOCAL_RANK", 0)) torch.cuda.set_device(local_rank) # seed must be the same in all processes if config.torch_seed is not None: torch.manual_seed(config.torch_seed) if local_rank > 0: sys.stdout = open(os.devnull, "w") start_time = time.time() if config.checkpoint_dir: ckpt_dir = config.checkpoint_dir else: ckpt_dir = model_checkpoint_dir(model) checkpoints = sorted(Path(ckpt_dir).glob("*.pth")) assert len(checkpoints) > 0, f"no checkpoint files found in {ckpt_dir}" assert model_parallel_size == len( checkpoints ), f"Loading a checkpoint for MP={len(checkpoints)} but world size is {model_parallel_size}" ckpt_path = checkpoints[get_model_parallel_rank()] state_dict = torch.load(ckpt_path, map_location="cpu", weights_only=True) with open(Path(ckpt_dir) / "params.json", "r") as f: params = json.loads(f.read()) if "model" in params: params = params["model"] model_args: ModelArgs = ModelArgs( max_seq_len=config.max_seq_len, max_batch_size=config.max_batch_size, **params, ) tokenizer = Tokenizer.get_instance() assert ( model_args.vocab_size == tokenizer.n_words ), f"model_args vocab = {model_args.vocab_size} but tokenizer vocab = {tokenizer.n_words}" if isinstance(config, MetaReferenceQuantizedInferenceConfig): if isinstance(config.quantization, Fp8QuantizationConfig): from .quantization.loader import convert_to_fp8_quantized_model # load on CPU in bf16 so that fp8 conversion does not find an # unexpected (fp32, e.g.) datatype torch.set_default_tensor_type(torch.BFloat16Tensor) if model_args.vision_chunk_size > 0: model = CrossAttentionTransformer(model_args) model.setup_cache(model_args.max_batch_size, torch.bfloat16) else: model = Transformer(model_args) model.load_state_dict(state_dict, strict=False) model = convert_to_fp8_quantized_model(model, config, ckpt_dir) elif isinstance(config.quantization, Int4QuantizationConfig): from .quantization.loader import convert_to_int4_quantized_model model = Transformer(model_args) model = convert_to_int4_quantized_model(model, model_args, config) model.load_state_dict(state_dict, strict=True) if ( model_args.quantization_args is not None and model_args.quantization_args.spinquant ): # Add a wrapper for adding hadamard transform for spinquant. # This needs to be done after loading the state dict otherwise an error will be raised while # loading the state dict. from .quantization.hadamard_utils import ( add_hadamard_transform_for_spinquant, ) add_hadamard_transform_for_spinquant(model) else: raise NotImplementedError( "Currently int4 and fp8 are the only supported quantization methods." ) else: if torch.cuda.is_bf16_supported(): torch.set_default_tensor_type(torch.cuda.BFloat16Tensor) else: torch.set_default_tensor_type(torch.cuda.HalfTensor) if model_args.vision_chunk_size > 0: model = CrossAttentionTransformer(model_args) model.setup_cache(model_args.max_batch_size, torch.bfloat16) else: model = Transformer(model_args) model.load_state_dict(state_dict, strict=False) print(f"Loaded in {time.time() - start_time:.2f} seconds") return Llama(model, tokenizer, model_args) def __init__(self, model: Transformer, tokenizer: Tokenizer, args: ModelArgs): self.args = args self.model = model self.tokenizer = tokenizer self.formatter = ChatFormat(tokenizer) @torch.inference_mode() def generate( self, model_input: ModelInput, max_gen_len: int, temperature: float = 0.6, top_p: float = 0.9, logprobs: bool = False, echo: bool = False, include_stop_token: bool = False, print_input_tokens: bool = False, logits_processor: Optional["LogitsProcessor"] = None, ) -> Generator: params = self.model.params if print_input_tokens: input_tokens = [ self.formatter.vision_token if t == 128256 else t for t in model_input.tokens ] cprint("Input to model -> " + self.tokenizer.decode(input_tokens), "red") prompt_tokens = [model_input.tokens] bsz = 1 assert bsz <= params.max_batch_size, (bsz, params.max_batch_size) min_prompt_len = min(len(t) for t in prompt_tokens) max_prompt_len = max(len(t) for t in prompt_tokens) if max_prompt_len >= params.max_seq_len: cprint( f"Out of token budget {max_prompt_len} vs {params.max_seq_len}", "red" ) return total_len = min(max_gen_len + max_prompt_len, params.max_seq_len) is_vision = isinstance(self.model, CrossAttentionTransformer) if is_vision: images = model_input.vision.images if model_input.vision is not None else [] mask = model_input.vision.mask if model_input.vision is not None else [] # the method works for bsz > 1 so add a batch dimension xattn_caches, cross_attention_masks, full_text_row_masked_out_mask = ( self.model.compute_vision_tokens_masks( batch_images=[images], batch_masks=[mask], total_len=total_len, ) ) pad_id = self.tokenizer.pad_id tokens = torch.full((bsz, total_len), pad_id, dtype=torch.long, device="cuda") for k, t in enumerate(prompt_tokens): tokens[k, : len(t)] = torch.tensor(t, dtype=torch.long, device="cuda") if logprobs: token_logprobs = torch.zeros_like(tokens, dtype=torch.float) prev_pos = 0 eos_reached = torch.tensor([False] * bsz, device="cuda") input_text_mask = tokens != pad_id if min_prompt_len == total_len: # TODO(ashwin): unify this branch with the one below and figure out multimodal crap logits = self.model.forward(tokens, prev_pos) token_logprobs = -F.cross_entropy( input=logits.transpose(1, 2), target=tokens, reduction="none", ignore_index=pad_id, ) stop_tokens = torch.tensor(self.tokenizer.stop_tokens, device="cuda") for cur_pos in range(min_prompt_len, total_len): if is_vision: position_ids = torch.arange( prev_pos, cur_pos, dtype=torch.long, device="cuda" ) logits = self.model.forward( position_ids, tokens, cross_attention_masks, full_text_row_masked_out_mask, xattn_caches, ) else: logits = self.model.forward(tokens[:, prev_pos:cur_pos], prev_pos) if logits_processor is not None: logits = logits_processor.process_logits(tokens[:, :cur_pos], logits) if temperature > 0: probs = torch.softmax(logits[:, -1] / temperature, dim=-1) next_token = sample_top_p(probs, top_p) else: next_token = torch.argmax(logits[:, -1], dim=-1) next_token = next_token.reshape(-1) # only replace token if prompt has already been generated next_token = torch.where( input_text_mask[:, cur_pos], tokens[:, cur_pos], next_token ) tokens[:, cur_pos] = next_token target = tokens[:, prev_pos + 1 : cur_pos + 1] if is_vision: # the logits space (num_classes) is designed to never contain a media_token # however our input token stream does contain them. we need to nuke them here # or else the CUDA kernels will crash with an illegal memory access vision_tokens = [self.tokenizer.special_tokens["<|image|>"], 128256] masks = [target.eq(t) for t in vision_tokens] if len(masks) > 1: mask = torch.logical_or(*masks) else: mask = masks[0] target[mask] = 0 if logprobs: token_logprobs[:, prev_pos + 1 : cur_pos + 1] = -F.cross_entropy( input=logits.transpose(1, 2), target=tokens[:, prev_pos + 1 : cur_pos + 1], reduction="none", ignore_index=pad_id, ) eos_reached |= (~input_text_mask[:, cur_pos]) & ( torch.isin(next_token, stop_tokens) ) yield TokenResult( token=next_token[0].item(), text=self.tokenizer.decode(next_token.tolist()), logprobs=( token_logprobs[:, cur_pos : cur_pos + 1][0].tolist() if logprobs else None ), ) prev_pos = cur_pos if all(eos_reached): break def completion( self, request: CompletionRequest, ) -> Generator: sampling_params = request.sampling_params max_gen_len = sampling_params.max_tokens if ( max_gen_len is None or max_gen_len == 0 or max_gen_len >= self.model.params.max_seq_len ): max_gen_len = self.model.params.max_seq_len - 1 model_input = self.formatter.encode_content(request.content) yield from self.generate( model_input=model_input, max_gen_len=max_gen_len, temperature=sampling_params.temperature, top_p=sampling_params.top_p, logprobs=bool(request.logprobs), include_stop_token=True, logits_processor=get_logits_processor( self.tokenizer, self.args.vocab_size, request.response_format, ), ) def chat_completion( self, request: ChatCompletionRequest, ) -> Generator: messages = chat_completion_request_to_messages(request) sampling_params = request.sampling_params max_gen_len = sampling_params.max_tokens if ( max_gen_len is None or max_gen_len == 0 or max_gen_len >= self.model.params.max_seq_len ): max_gen_len = self.model.params.max_seq_len - 1 yield from self.generate( model_input=self.formatter.encode_dialog_prompt( messages, request.tool_prompt_format, ), max_gen_len=max_gen_len, temperature=sampling_params.temperature, top_p=sampling_params.top_p, logprobs=bool(request.logprobs), include_stop_token=True, logits_processor=get_logits_processor( self.tokenizer, self.args.vocab_size, request.response_format, ), ) def sample_top_p(probs, p): """ Perform top-p (nucleus) sampling on a probability distribution. Args: probs (torch.Tensor): Probability distribution tensor. p (float): Probability threshold for top-p sampling. Returns: torch.Tensor: Sampled token indices. Note: Top-p sampling selects the smallest set of tokens whose cumulative probability mass exceeds the threshold p. The distribution is renormalized based on the selected tokens. """ probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True) probs_sum = torch.cumsum(probs_sort, dim=-1) mask = probs_sum - probs_sort > p probs_sort[mask] = 0.0 probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True)) next_token = torch.multinomial(probs_sort, num_samples=1) next_token = torch.gather(probs_idx, -1, next_token) return next_token class LogitsProcessor: def __init__(self, token_enforcer: TokenEnforcer): self.token_enforcer = token_enforcer self.mask: Optional[torch.Tensor] = None def process_logits( self, tokens: torch.Tensor, scores: torch.Tensor ) -> torch.Tensor: token_sequence = tokens[0, :].tolist() allowed_tokens = self.token_enforcer.get_allowed_tokens(token_sequence) if self.mask is not None: self.mask.fill_(-math.inf) else: self.mask = torch.full_like(scores, -math.inf) self.mask[:, :, allowed_tokens] = 0 scores = scores + self.mask return scores def get_logits_processor( tokenizer: Tokenizer, vocab_size: int, response_format: Optional[ResponseFormat], ) -> Optional["LogitsProcessor"]: if response_format is None: return None if response_format.type != ResponseFormatType.json_schema.value: raise ValueError(f"Unsupported response format type {response_format.type}") parser = JsonSchemaParser(response_format.schema) data = TokenEnforcerTokenizerData( _build_regular_tokens_list(tokenizer, vocab_size), tokenizer.decode, tokenizer.stop_tokens, ) token_enforcer = TokenEnforcer(data, parser) return LogitsProcessor(token_enforcer) def _build_regular_tokens_list( tokenizer: Tokenizer, vocab_size: int ) -> List[Tuple[int, str, bool]]: token_0 = tokenizer.encode("0", bos=False, eos=False)[-1] regular_tokens = [] special_token_ids = set(tokenizer.special_tokens.values()) for token_idx in range(vocab_size): if token_idx in special_token_ids: continue # We prepend token 0 and skip the first letter of the result to get a space if the token is a start word. decoded_after_0 = tokenizer.decode([token_0, token_idx])[1:] decoded_regular = tokenizer.decode([token_idx]) is_word_start_token = len(decoded_after_0) > len(decoded_regular) regular_tokens.append((token_idx, decoded_after_0, is_word_start_token)) return regular_tokens