--- orphan: true --- # Meta Reference Quantized Distribution ```{toctree} :maxdepth: 2 :hidden: self ``` The `llamastack/distribution-{{ name }}` distribution consists of the following provider configurations: {{ providers_table }} The only difference vs. the `meta-reference-gpu` distribution is that it has support for more efficient inference -- with fp8, int4 quantization, etc. Note that you need access to nvidia GPUs to run this distribution. This distribution is not compatible with CPU-only machines or machines with AMD GPUs. {% if run_config_env_vars %} ### Environment Variables The following environment variables can be configured: {% for var, (default_value, description) in run_config_env_vars.items() %} - `{{ var }}`: {{ description }} (default: `{{ default_value }}`) {% endfor %} {% endif %} ## Prerequisite: Downloading Models Please use `llama model list --downloaded` to check that you have llama model checkpoints downloaded in `~/.llama` before proceeding. See [installation guide](https://llama-stack.readthedocs.io/en/latest/references/llama_cli_reference/download_models.html) here to download the models. Run `llama model list` to see the available models to download, and `llama model download` to download the checkpoints. ``` $ llama model list --downloaded ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━┓ ┃ Model ┃ Size ┃ Modified Time ┃ ┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━┩ │ Llama3.2-1B-Instruct:int4-qlora-eo8 │ 1.53 GB │ 2025-02-26 11:22:28 │ ├─────────────────────────────────────────┼──────────┼─────────────────────┤ │ Llama3.2-1B │ 2.31 GB │ 2025-02-18 21:48:52 │ ├─────────────────────────────────────────┼──────────┼─────────────────────┤ │ Prompt-Guard-86M │ 0.02 GB │ 2025-02-26 11:29:28 │ ├─────────────────────────────────────────┼──────────┼─────────────────────┤ │ Llama3.2-3B-Instruct:int4-spinquant-eo8 │ 3.69 GB │ 2025-02-26 11:37:41 │ ├─────────────────────────────────────────┼──────────┼─────────────────────┤ │ Llama3.2-3B │ 5.99 GB │ 2025-02-18 21:51:26 │ ├─────────────────────────────────────────┼──────────┼─────────────────────┤ │ Llama3.1-8B │ 14.97 GB │ 2025-02-16 10:36:37 │ ├─────────────────────────────────────────┼──────────┼─────────────────────┤ │ Llama3.2-1B-Instruct:int4-spinquant-eo8 │ 1.51 GB │ 2025-02-26 11:35:02 │ ├─────────────────────────────────────────┼──────────┼─────────────────────┤ │ Llama-Guard-3-1B │ 2.80 GB │ 2025-02-26 11:20:46 │ ├─────────────────────────────────────────┼──────────┼─────────────────────┤ │ Llama-Guard-3-1B:int4 │ 0.43 GB │ 2025-02-26 11:33:33 │ └─────────────────────────────────────────┴──────────┴─────────────────────┘ ``` ## Running the Distribution You can do this via Conda (build code) or Docker which has a pre-built image. ### Via Docker This method allows you to get started quickly without having to build the distribution code. ```bash LLAMA_STACK_PORT=8321 docker run \ -it \ --pull always \ -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \ -v ~/.llama:/root/.llama \ llamastack/distribution-{{ name }} \ --port $LLAMA_STACK_PORT \ --env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct ``` If you are using Llama Stack Safety / Shield APIs, use: ```bash docker run \ -it \ --pull always \ -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \ -v ~/.llama:/root/.llama \ llamastack/distribution-{{ name }} \ --port $LLAMA_STACK_PORT \ --env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct \ --env SAFETY_MODEL=meta-llama/Llama-Guard-3-1B ``` ### Via Conda Make sure you have done `uv pip install llama-stack` and have the Llama Stack CLI available. ```bash llama stack build --template {{ name }} --image-type conda llama stack run distributions/{{ name }}/run.yaml \ --port $LLAMA_STACK_PORT \ --env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct ``` If you are using Llama Stack Safety / Shield APIs, use: ```bash llama stack run distributions/{{ name }}/run-with-safety.yaml \ --port $LLAMA_STACK_PORT \ --env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct \ --env SAFETY_MODEL=meta-llama/Llama-Guard-3-1B ```