# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. from typing import * # noqa: F403 import json from botocore.client import BaseClient from llama_models.datatypes import CoreModelId from llama_models.llama3.api.chat_format import ChatFormat from llama_models.llama3.api.tokenizer import Tokenizer from llama_stack.providers.utils.inference.model_registry import ( build_model_alias, ModelRegistryHelper, ) from llama_stack.providers.utils.inference.openai_compat import ( OpenAICompatCompletionChoice, OpenAICompatCompletionResponse, process_chat_completion_response, process_chat_completion_stream_response, ) from llama_stack.providers.utils.inference.prompt_adapter import ( chat_completion_request_to_prompt, content_has_media, interleaved_content_as_str, ) from llama_stack.apis.inference import * # noqa: F403 from llama_stack.providers.remote.inference.bedrock.config import BedrockConfig from llama_stack.providers.utils.bedrock.client import create_bedrock_client MODEL_ALIASES = [ build_model_alias( "meta.llama3-1-8b-instruct-v1:0", CoreModelId.llama3_1_8b_instruct.value, ), build_model_alias( "meta.llama3-1-70b-instruct-v1:0", CoreModelId.llama3_1_70b_instruct.value, ), build_model_alias( "meta.llama3-1-405b-instruct-v1:0", CoreModelId.llama3_1_405b_instruct.value, ), ] class BedrockInferenceAdapter(ModelRegistryHelper, Inference): def __init__(self, config: BedrockConfig) -> None: ModelRegistryHelper.__init__(self, MODEL_ALIASES) self._config = config self._client = create_bedrock_client(config) self.formatter = ChatFormat(Tokenizer.get_instance()) @property def client(self) -> BaseClient: return self._client async def initialize(self) -> None: pass async def shutdown(self) -> None: self.client.close() async def completion( self, model_id: str, content: InterleavedContent, sampling_params: Optional[SamplingParams] = SamplingParams(), response_format: Optional[ResponseFormat] = None, stream: Optional[bool] = False, logprobs: Optional[LogProbConfig] = None, ) -> AsyncGenerator: raise NotImplementedError() async def chat_completion( self, model_id: str, messages: List[Message], sampling_params: Optional[SamplingParams] = SamplingParams(), response_format: Optional[ResponseFormat] = None, tools: Optional[List[ToolDefinition]] = None, tool_choice: Optional[ToolChoice] = ToolChoice.auto, tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json, stream: Optional[bool] = False, logprobs: Optional[LogProbConfig] = None, ) -> Union[ ChatCompletionResponse, AsyncIterator[ChatCompletionResponseStreamChunk] ]: model = await self.model_store.get_model(model_id) request = ChatCompletionRequest( model=model.provider_resource_id, messages=messages, sampling_params=sampling_params, tools=tools or [], tool_choice=tool_choice, tool_prompt_format=tool_prompt_format, response_format=response_format, stream=stream, logprobs=logprobs, ) if stream: return self._stream_chat_completion(request) else: return await self._nonstream_chat_completion(request) async def _nonstream_chat_completion( self, request: ChatCompletionRequest ) -> ChatCompletionResponse: params = await self._get_params_for_chat_completion(request) res = self.client.invoke_model(**params) chunk = next(res["body"]) result = json.loads(chunk.decode("utf-8")) choice = OpenAICompatCompletionChoice( finish_reason=result["stop_reason"], text=result["generation"], ) response = OpenAICompatCompletionResponse(choices=[choice]) return process_chat_completion_response(response, self.formatter) async def _stream_chat_completion( self, request: ChatCompletionRequest ) -> AsyncGenerator: params = await self._get_params_for_chat_completion(request) res = self.client.invoke_model_with_response_stream(**params) event_stream = res["body"] async def _generate_and_convert_to_openai_compat(): for chunk in event_stream: chunk = chunk["chunk"]["bytes"] result = json.loads(chunk.decode("utf-8")) choice = OpenAICompatCompletionChoice( finish_reason=result["stop_reason"], text=result["generation"], ) yield OpenAICompatCompletionResponse(choices=[choice]) stream = _generate_and_convert_to_openai_compat() async for chunk in process_chat_completion_stream_response( stream, self.formatter ): yield chunk async def _get_params_for_chat_completion( self, request: ChatCompletionRequest ) -> Dict: bedrock_model = request.model inference_config = {} param_mapping = { "max_tokens": "max_gen_len", "temperature": "temperature", "top_p": "top_p", } for k, v in param_mapping.items(): if getattr(request.sampling_params, k): inference_config[v] = getattr(request.sampling_params, k) prompt = await chat_completion_request_to_prompt( request, self.get_llama_model(request.model), self.formatter ) return { "modelId": bedrock_model, "body": json.dumps( { "prompt": prompt, **inference_config, } ), } async def embeddings( self, model_id: str, contents: List[InterleavedContent], ) -> EmbeddingsResponse: model = await self.model_store.get_model(model_id) embeddings = [] for content in contents: assert not content_has_media( content ), "Bedrock does not support media for embeddings" input_text = interleaved_content_as_str(content) input_body = {"inputText": input_text} body = json.dumps(input_body) response = self.client.invoke_model( body=body, modelId=model.provider_resource_id, accept="application/json", contentType="application/json", ) response_body = json.loads(response.get("body").read()) embeddings.append(response_body.get("embedding")) return EmbeddingsResponse(embeddings=embeddings)