# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. from typing import AsyncGenerator, List, Optional, Union from cerebras.cloud.sdk import AsyncCerebras from llama_models.datatypes import CoreModelId from llama_models.llama3.api.chat_format import ChatFormat from llama_models.llama3.api.tokenizer import Tokenizer from llama_stack.apis.common.content_types import InterleavedContent from llama_stack.apis.inference import ( ChatCompletionRequest, CompletionRequest, CompletionResponse, EmbeddingsResponse, Inference, LogProbConfig, Message, ResponseFormat, SamplingParams, ToolChoice, ToolDefinition, ToolPromptFormat, ) from llama_stack.providers.utils.inference.model_registry import ( build_model_alias, ModelRegistryHelper, ) from llama_stack.providers.utils.inference.openai_compat import ( get_sampling_options, process_chat_completion_response, process_chat_completion_stream_response, process_completion_response, process_completion_stream_response, ) from llama_stack.providers.utils.inference.prompt_adapter import ( chat_completion_request_to_prompt, completion_request_to_prompt, ) from .config import CerebrasImplConfig model_aliases = [ build_model_alias( "llama3.1-8b", CoreModelId.llama3_1_8b_instruct.value, ), build_model_alias( "llama-3.3-70b", CoreModelId.llama3_3_70b_instruct.value, ), ] class CerebrasInferenceAdapter(ModelRegistryHelper, Inference): def __init__(self, config: CerebrasImplConfig) -> None: ModelRegistryHelper.__init__( self, model_aliases=model_aliases, ) self.config = config self.formatter = ChatFormat(Tokenizer.get_instance()) self.client = AsyncCerebras( base_url=self.config.base_url, api_key=self.config.api_key.get_secret_value(), ) async def initialize(self) -> None: return async def shutdown(self) -> None: pass async def completion( self, model_id: str, content: InterleavedContent, sampling_params: Optional[SamplingParams] = SamplingParams(), response_format: Optional[ResponseFormat] = None, stream: Optional[bool] = False, logprobs: Optional[LogProbConfig] = None, ) -> AsyncGenerator: model = await self.model_store.get_model(model_id) request = CompletionRequest( model=model.provider_resource_id, content=content, sampling_params=sampling_params, response_format=response_format, stream=stream, logprobs=logprobs, ) if stream: return self._stream_completion( request, ) else: return await self._nonstream_completion(request) async def _nonstream_completion( self, request: CompletionRequest ) -> CompletionResponse: params = await self._get_params(request) r = await self.client.completions.create(**params) return process_completion_response(r, self.formatter) async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator: params = await self._get_params(request) stream = await self.client.completions.create(**params) async for chunk in process_completion_stream_response(stream, self.formatter): yield chunk async def chat_completion( self, model_id: str, messages: List[Message], sampling_params: Optional[SamplingParams] = SamplingParams(), tools: Optional[List[ToolDefinition]] = None, tool_choice: Optional[ToolChoice] = ToolChoice.auto, tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json, response_format: Optional[ResponseFormat] = None, stream: Optional[bool] = False, logprobs: Optional[LogProbConfig] = None, ) -> AsyncGenerator: model = await self.model_store.get_model(model_id) request = ChatCompletionRequest( model=model.provider_resource_id, messages=messages, sampling_params=sampling_params, tools=tools or [], tool_choice=tool_choice, tool_prompt_format=tool_prompt_format, response_format=response_format, stream=stream, logprobs=logprobs, ) if stream: return self._stream_chat_completion(request) else: return await self._nonstream_chat_completion(request) async def _nonstream_chat_completion( self, request: CompletionRequest ) -> CompletionResponse: params = await self._get_params(request) r = await self.client.completions.create(**params) return process_chat_completion_response(r, self.formatter) async def _stream_chat_completion( self, request: CompletionRequest ) -> AsyncGenerator: params = await self._get_params(request) stream = await self.client.completions.create(**params) async for chunk in process_chat_completion_stream_response( stream, self.formatter ): yield chunk async def _get_params( self, request: Union[ChatCompletionRequest, CompletionRequest] ) -> dict: if request.sampling_params and request.sampling_params.top_k: raise ValueError("`top_k` not supported by Cerebras") prompt = "" if isinstance(request, ChatCompletionRequest): prompt = await chat_completion_request_to_prompt( request, self.get_llama_model(request.model), self.formatter ) elif isinstance(request, CompletionRequest): prompt = await completion_request_to_prompt(request, self.formatter) else: raise ValueError(f"Unknown request type {type(request)}") return { "model": request.model, "prompt": prompt, "stream": request.stream, **get_sampling_options(request.sampling_params), } async def embeddings( self, model_id: str, contents: List[InterleavedContent], ) -> EmbeddingsResponse: raise NotImplementedError()