# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. from typing import AsyncGenerator, List, Optional from llama_models.datatypes import CoreModelId from llama_models.llama3.api.chat_format import ChatFormat from llama_models.llama3.api.tokenizer import Tokenizer from openai import OpenAI from llama_stack.apis.common.content_types import InterleavedContent from llama_stack.apis.inference import ( ChatCompletionRequest, ChatCompletionResponse, EmbeddingsResponse, Inference, LogProbConfig, Message, ResponseFormat, SamplingParams, ToolChoice, ToolDefinition, ToolPromptFormat, ) from llama_stack.providers.utils.inference.model_registry import ( ModelRegistryHelper, build_model_alias, ) from llama_stack.providers.utils.inference.openai_compat import ( get_sampling_options, process_chat_completion_response, process_chat_completion_stream_response, ) from llama_stack.providers.utils.inference.prompt_adapter import ( chat_completion_request_to_prompt, ) from .config import DatabricksImplConfig model_aliases = [ build_model_alias( "databricks-meta-llama-3-1-70b-instruct", CoreModelId.llama3_1_70b_instruct.value, ), build_model_alias( "databricks-meta-llama-3-1-405b-instruct", CoreModelId.llama3_1_405b_instruct.value, ), ] class DatabricksInferenceAdapter(ModelRegistryHelper, Inference): def __init__(self, config: DatabricksImplConfig) -> None: ModelRegistryHelper.__init__( self, model_aliases=model_aliases, ) self.config = config self.formatter = ChatFormat(Tokenizer.get_instance()) async def initialize(self) -> None: return async def shutdown(self) -> None: pass async def completion( self, model: str, content: InterleavedContent, sampling_params: Optional[SamplingParams] = SamplingParams(), response_format: Optional[ResponseFormat] = None, stream: Optional[bool] = False, logprobs: Optional[LogProbConfig] = None, ) -> AsyncGenerator: raise NotImplementedError() async def chat_completion( self, model: str, messages: List[Message], sampling_params: Optional[SamplingParams] = SamplingParams(), response_format: Optional[ResponseFormat] = None, tools: Optional[List[ToolDefinition]] = None, tool_choice: Optional[ToolChoice] = ToolChoice.auto, tool_prompt_format: Optional[ToolPromptFormat] = None, stream: Optional[bool] = False, logprobs: Optional[LogProbConfig] = None, tool_config: Optional[ToolConfig] = None, ) -> AsyncGenerator: request = ChatCompletionRequest( model=model, messages=messages, sampling_params=sampling_params, tools=tools or [], stream=stream, logprobs=logprobs, tool_config=tool_config, ) client = OpenAI(base_url=self.config.url, api_key=self.config.api_token) if stream: return self._stream_chat_completion(request, client) else: return await self._nonstream_chat_completion(request, client) async def _nonstream_chat_completion( self, request: ChatCompletionRequest, client: OpenAI ) -> ChatCompletionResponse: params = self._get_params(request) r = client.completions.create(**params) return process_chat_completion_response(r, self.formatter, request) async def _stream_chat_completion(self, request: ChatCompletionRequest, client: OpenAI) -> AsyncGenerator: params = self._get_params(request) async def _to_async_generator(): s = client.completions.create(**params) for chunk in s: yield chunk stream = _to_async_generator() async for chunk in process_chat_completion_stream_response(stream, self.formatter, request): yield chunk def _get_params(self, request: ChatCompletionRequest) -> dict: return { "model": request.model, "prompt": chat_completion_request_to_prompt(request, self.get_llama_model(request.model), self.formatter), "stream": request.stream, **get_sampling_options(request.sampling_params), } async def embeddings( self, model: str, contents: List[InterleavedContent], ) -> EmbeddingsResponse: raise NotImplementedError()