# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. import copy import json import os import re import secrets import string import uuid from datetime import datetime from typing import Any, AsyncGenerator, Dict, List, Optional, Tuple, Union from urllib.parse import urlparse import httpx from llama_stack.apis.agents import ( AgentConfig, AgentToolGroup, AgentToolGroupWithArgs, AgentTurnCreateRequest, AgentTurnResponseEvent, AgentTurnResponseEventType, AgentTurnResponseStepCompletePayload, AgentTurnResponseStepProgressPayload, AgentTurnResponseStepStartPayload, AgentTurnResponseStreamChunk, AgentTurnResponseTurnAwaitingInputPayload, AgentTurnResponseTurnCompletePayload, AgentTurnResumeRequest, Attachment, Document, InferenceStep, ShieldCallStep, StepType, ToolExecutionStep, Turn, ) from llama_stack.apis.common.content_types import ( URL, TextContentItem, ToolCallDelta, ToolCallParseStatus, ) from llama_stack.apis.inference import ( ChatCompletionResponseEventType, CompletionMessage, Inference, Message, SamplingParams, StopReason, SystemMessage, ToolDefinition, ToolResponse, ToolResponseMessage, UserMessage, ) from llama_stack.apis.safety import Safety from llama_stack.apis.tools import ( RAGDocument, ToolGroups, ToolInvocationResult, ToolRuntime, ) from llama_stack.apis.vector_io import VectorIO from llama_stack.log import get_logger from llama_stack.models.llama.datatypes import ( BuiltinTool, ToolCall, ToolParamDefinition, ) from llama_stack.providers.utils.kvstore import KVStore from llama_stack.providers.utils.telemetry import tracing from .persistence import AgentPersistence from .safety import SafetyException, ShieldRunnerMixin def make_random_string(length: int = 8): return "".join(secrets.choice(string.ascii_letters + string.digits) for _ in range(length)) TOOLS_ATTACHMENT_KEY_REGEX = re.compile(r"__tools_attachment__=(\{.*?\})") MEMORY_QUERY_TOOL = "knowledge_search" WEB_SEARCH_TOOL = "web_search" RAG_TOOL_GROUP = "builtin::rag" logger = get_logger(name=__name__, category="agents") class ChatAgent(ShieldRunnerMixin): def __init__( self, agent_id: str, agent_config: AgentConfig, tempdir: str, inference_api: Inference, safety_api: Safety, tool_runtime_api: ToolRuntime, tool_groups_api: ToolGroups, vector_io_api: VectorIO, persistence_store: KVStore, ): self.agent_id = agent_id self.agent_config = agent_config self.tempdir = tempdir self.inference_api = inference_api self.safety_api = safety_api self.vector_io_api = vector_io_api self.storage = AgentPersistence(agent_id, persistence_store) self.tool_runtime_api = tool_runtime_api self.tool_groups_api = tool_groups_api ShieldRunnerMixin.__init__( self, safety_api, input_shields=agent_config.input_shields, output_shields=agent_config.output_shields, ) def turn_to_messages(self, turn: Turn) -> List[Message]: messages = [] # NOTE: if a toolcall response is in a step, we do not add it when processing the input messages tool_call_ids = set() for step in turn.steps: if step.step_type == StepType.tool_execution.value: for response in step.tool_responses: tool_call_ids.add(response.call_id) for m in turn.input_messages: msg = m.model_copy() # We do not want to keep adding RAG context to the input messages # May be this should be a parameter of the agentic instance # that can define its behavior in a custom way if isinstance(msg, UserMessage): msg.context = None if isinstance(msg, ToolResponseMessage): if msg.call_id in tool_call_ids: # NOTE: do not add ToolResponseMessage here, we'll add them in tool_execution steps continue messages.append(msg) for step in turn.steps: if step.step_type == StepType.inference.value: messages.append(step.model_response) elif step.step_type == StepType.tool_execution.value: for response in step.tool_responses: messages.append( ToolResponseMessage( call_id=response.call_id, tool_name=response.tool_name, content=response.content, ) ) elif step.step_type == StepType.shield_call.value: if step.violation: # CompletionMessage itself in the ShieldResponse messages.append( CompletionMessage( content=step.violation.user_message, stop_reason=StopReason.end_of_turn, ) ) return messages async def create_session(self, name: str) -> str: return await self.storage.create_session(name) async def get_messages_from_turns(self, turns: List[Turn]) -> List[Message]: messages = [] if self.agent_config.instructions != "": messages.append(SystemMessage(content=self.agent_config.instructions)) for turn in turns: messages.extend(self.turn_to_messages(turn)) return messages async def create_and_execute_turn(self, request: AgentTurnCreateRequest) -> AsyncGenerator: async with tracing.span("create_and_execute_turn") as span: span.set_attribute("session_id", request.session_id) span.set_attribute("agent_id", self.agent_id) span.set_attribute("request", request.model_dump_json()) turn_id = str(uuid.uuid4()) span.set_attribute("turn_id", turn_id) async for chunk in self._run_turn(request, turn_id): yield chunk async def resume_turn(self, request: AgentTurnResumeRequest) -> AsyncGenerator: async with tracing.span("resume_turn") as span: span.set_attribute("agent_id", self.agent_id) span.set_attribute("session_id", request.session_id) span.set_attribute("turn_id", request.turn_id) span.set_attribute("request", request.model_dump_json()) async for chunk in self._run_turn(request): yield chunk async def _run_turn( self, request: Union[AgentTurnCreateRequest, AgentTurnResumeRequest], turn_id: Optional[str] = None, ) -> AsyncGenerator: assert request.stream is True, "Non-streaming not supported" is_resume = isinstance(request, AgentTurnResumeRequest) session_info = await self.storage.get_session_info(request.session_id) if session_info is None: raise ValueError(f"Session {request.session_id} not found") turns = await self.storage.get_session_turns(request.session_id) if is_resume and len(turns) == 0: raise ValueError("No turns found for session") steps = [] messages = await self.get_messages_from_turns(turns) if is_resume: if isinstance(request.tool_responses[0], ToolResponseMessage): tool_response_messages = request.tool_responses tool_responses = [ ToolResponse(call_id=x.call_id, tool_name=x.tool_name, content=x.content) for x in request.tool_responses ] else: tool_response_messages = [ ToolResponseMessage(call_id=x.call_id, tool_name=x.tool_name, content=x.content) for x in request.tool_responses ] tool_responses = request.tool_responses messages.extend(tool_response_messages) last_turn = turns[-1] last_turn_messages = self.turn_to_messages(last_turn) last_turn_messages = [ x for x in last_turn_messages if isinstance(x, UserMessage) or isinstance(x, ToolResponseMessage) ] last_turn_messages.extend(tool_response_messages) # get steps from the turn steps = last_turn.steps # mark tool execution step as complete # if there's no tool execution in progress step (due to storage, or tool call parsing on client), # we'll create a new tool execution step with current time in_progress_tool_call_step = await self.storage.get_in_progress_tool_call_step( request.session_id, request.turn_id ) now = datetime.now().astimezone().isoformat() tool_execution_step = ToolExecutionStep( step_id=(in_progress_tool_call_step.step_id if in_progress_tool_call_step else str(uuid.uuid4())), turn_id=request.turn_id, tool_calls=(in_progress_tool_call_step.tool_calls if in_progress_tool_call_step else []), tool_responses=tool_responses, completed_at=now, started_at=(in_progress_tool_call_step.started_at if in_progress_tool_call_step else now), ) steps.append(tool_execution_step) yield AgentTurnResponseStreamChunk( event=AgentTurnResponseEvent( payload=AgentTurnResponseStepCompletePayload( step_type=StepType.tool_execution.value, step_id=tool_execution_step.step_id, step_details=tool_execution_step, ) ) ) input_messages = last_turn_messages turn_id = request.turn_id start_time = last_turn.started_at else: messages.extend(request.messages) start_time = datetime.now().astimezone().isoformat() input_messages = request.messages output_message = None async for chunk in self.run( session_id=request.session_id, turn_id=turn_id, input_messages=messages, sampling_params=self.agent_config.sampling_params, stream=request.stream, documents=request.documents if not is_resume else None, toolgroups_for_turn=request.toolgroups if not is_resume else None, ): if isinstance(chunk, CompletionMessage): output_message = chunk continue assert isinstance(chunk, AgentTurnResponseStreamChunk), f"Unexpected type {type(chunk)}" event = chunk.event if event.payload.event_type == AgentTurnResponseEventType.step_complete.value: steps.append(event.payload.step_details) yield chunk assert output_message is not None turn = Turn( turn_id=turn_id, session_id=request.session_id, input_messages=input_messages, output_message=output_message, started_at=start_time, completed_at=datetime.now().astimezone().isoformat(), steps=steps, ) await self.storage.add_turn_to_session(request.session_id, turn) if output_message.tool_calls: chunk = AgentTurnResponseStreamChunk( event=AgentTurnResponseEvent( payload=AgentTurnResponseTurnAwaitingInputPayload( turn=turn, ) ) ) else: chunk = AgentTurnResponseStreamChunk( event=AgentTurnResponseEvent( payload=AgentTurnResponseTurnCompletePayload( turn=turn, ) ) ) yield chunk async def run( self, session_id: str, turn_id: str, input_messages: List[Message], sampling_params: SamplingParams, stream: bool = False, documents: Optional[List[Document]] = None, toolgroups_for_turn: Optional[List[AgentToolGroup]] = None, ) -> AsyncGenerator: # Doing async generators makes downstream code much simpler and everything amenable to # streaming. However, it also makes things complicated here because AsyncGenerators cannot # return a "final value" for the `yield from` statement. we simulate that by yielding a # final boolean (to see whether an exception happened) and then explicitly testing for it. if len(self.input_shields) > 0: async for res in self.run_multiple_shields_wrapper( turn_id, input_messages, self.input_shields, "user-input" ): if isinstance(res, bool): return else: yield res async for res in self._run( session_id, turn_id, input_messages, sampling_params, stream, documents, toolgroups_for_turn, ): if isinstance(res, bool): return elif isinstance(res, CompletionMessage): final_response = res break else: yield res assert final_response is not None # for output shields run on the full input and output combination messages = input_messages + [final_response] if len(self.output_shields) > 0: async for res in self.run_multiple_shields_wrapper( turn_id, messages, self.output_shields, "assistant-output" ): if isinstance(res, bool): return else: yield res yield final_response async def run_multiple_shields_wrapper( self, turn_id: str, messages: List[Message], shields: List[str], touchpoint: str, ) -> AsyncGenerator: async with tracing.span("run_shields") as span: span.set_attribute("input", [m.model_dump_json() for m in messages]) if len(shields) == 0: span.set_attribute("output", "no shields") return step_id = str(uuid.uuid4()) shield_call_start_time = datetime.now().astimezone().isoformat() try: yield AgentTurnResponseStreamChunk( event=AgentTurnResponseEvent( payload=AgentTurnResponseStepStartPayload( step_type=StepType.shield_call.value, step_id=step_id, metadata=dict(touchpoint=touchpoint), ) ) ) await self.run_multiple_shields(messages, shields) except SafetyException as e: yield AgentTurnResponseStreamChunk( event=AgentTurnResponseEvent( payload=AgentTurnResponseStepCompletePayload( step_type=StepType.shield_call.value, step_id=step_id, step_details=ShieldCallStep( step_id=step_id, turn_id=turn_id, violation=e.violation, started_at=shield_call_start_time, completed_at=datetime.now().astimezone().isoformat(), ), ) ) ) span.set_attribute("output", e.violation.model_dump_json()) yield CompletionMessage( content=str(e), stop_reason=StopReason.end_of_turn, ) yield False yield AgentTurnResponseStreamChunk( event=AgentTurnResponseEvent( payload=AgentTurnResponseStepCompletePayload( step_type=StepType.shield_call.value, step_id=step_id, step_details=ShieldCallStep( step_id=step_id, turn_id=turn_id, violation=None, started_at=shield_call_start_time, completed_at=datetime.now().astimezone().isoformat(), ), ) ) ) span.set_attribute("output", "no violations") async def _run( self, session_id: str, turn_id: str, input_messages: List[Message], sampling_params: SamplingParams, stream: bool = False, documents: Optional[List[Document]] = None, toolgroups_for_turn: Optional[List[AgentToolGroup]] = None, ) -> AsyncGenerator: # TODO: simplify all of this code, it can be simpler toolgroup_args = {} toolgroups = set() for toolgroup in self.agent_config.toolgroups + (toolgroups_for_turn or []): if isinstance(toolgroup, AgentToolGroupWithArgs): tool_group_name, tool_name = self._parse_toolgroup_name(toolgroup.name) toolgroups.add(tool_group_name) toolgroup_args[tool_group_name] = toolgroup.args else: toolgroups.add(toolgroup) tool_defs, tool_to_group = await self._get_tool_defs(toolgroups_for_turn) if documents: await self.handle_documents(session_id, documents, input_messages, tool_defs) session_info = await self.storage.get_session_info(session_id) # if the session has a memory bank id, let the memory tool use it if session_info and session_info.vector_db_id: if RAG_TOOL_GROUP not in toolgroup_args: toolgroup_args[RAG_TOOL_GROUP] = {"vector_db_ids": [session_info.vector_db_id]} else: toolgroup_args[RAG_TOOL_GROUP]["vector_db_ids"].append(session_info.vector_db_id) output_attachments = [] n_iter = await self.storage.get_num_infer_iters_in_turn(session_id, turn_id) or 0 # Build a map of custom tools to their definitions for faster lookup client_tools = {} for tool in self.agent_config.client_tools: client_tools[tool.name] = tool while True: step_id = str(uuid.uuid4()) inference_start_time = datetime.now().astimezone().isoformat() yield AgentTurnResponseStreamChunk( event=AgentTurnResponseEvent( payload=AgentTurnResponseStepStartPayload( step_type=StepType.inference.value, step_id=step_id, ) ) ) tool_calls = [] content = "" stop_reason = None async with tracing.span("inference") as span: async for chunk in await self.inference_api.chat_completion( self.agent_config.model, input_messages, tools=tool_defs, tool_prompt_format=self.agent_config.tool_config.tool_prompt_format, response_format=self.agent_config.response_format, stream=True, sampling_params=sampling_params, tool_config=self.agent_config.tool_config, ): event = chunk.event if event.event_type == ChatCompletionResponseEventType.start: continue elif event.event_type == ChatCompletionResponseEventType.complete: stop_reason = StopReason.end_of_turn continue delta = event.delta if delta.type == "tool_call": if delta.parse_status == ToolCallParseStatus.succeeded: tool_calls.append(delta.tool_call) elif delta.parse_status == ToolCallParseStatus.failed: # If we cannot parse the tools, set the content to the unparsed raw text content = delta.tool_call if stream: yield AgentTurnResponseStreamChunk( event=AgentTurnResponseEvent( payload=AgentTurnResponseStepProgressPayload( step_type=StepType.inference.value, step_id=step_id, delta=delta, ) ) ) elif delta.type == "text": content += delta.text if stream and event.stop_reason is None: yield AgentTurnResponseStreamChunk( event=AgentTurnResponseEvent( payload=AgentTurnResponseStepProgressPayload( step_type=StepType.inference.value, step_id=step_id, delta=delta, ) ) ) else: raise ValueError(f"Unexpected delta type {type(delta)}") if event.stop_reason is not None: stop_reason = event.stop_reason span.set_attribute("stop_reason", stop_reason) span.set_attribute( "input", json.dumps([json.loads(m.model_dump_json()) for m in input_messages]), ) output_attr = json.dumps( { "content": content, "tool_calls": [json.loads(t.model_dump_json()) for t in tool_calls], } ) span.set_attribute("output", output_attr) n_iter += 1 await self.storage.set_num_infer_iters_in_turn(session_id, turn_id, n_iter) stop_reason = stop_reason or StopReason.out_of_tokens # If tool calls are parsed successfully, # if content is not made null the tool call str will also be in the content # and tokens will have tool call syntax included twice if tool_calls: content = "" message = CompletionMessage( content=content, stop_reason=stop_reason, tool_calls=tool_calls, ) yield AgentTurnResponseStreamChunk( event=AgentTurnResponseEvent( payload=AgentTurnResponseStepCompletePayload( step_type=StepType.inference.value, step_id=step_id, step_details=InferenceStep( # somewhere deep, we are re-assigning message or closing over some # variable which causes message to mutate later on. fix with a # `deepcopy` for now, but this is symptomatic of a deeper issue. step_id=step_id, turn_id=turn_id, model_response=copy.deepcopy(message), started_at=inference_start_time, completed_at=datetime.now().astimezone().isoformat(), ), ) ) ) if n_iter >= self.agent_config.max_infer_iters: logger.info(f"done with MAX iterations ({n_iter}), exiting.") # NOTE: mark end_of_turn to indicate to client that we are done with the turn # Do not continue the tool call loop after this point message.stop_reason = StopReason.end_of_turn yield message break if stop_reason == StopReason.out_of_tokens: logger.info("out of token budget, exiting.") yield message break if len(message.tool_calls) == 0: if stop_reason == StopReason.end_of_turn: # TODO: UPDATE RETURN TYPE TO SEND A TUPLE OF (MESSAGE, ATTACHMENTS) if len(output_attachments) > 0: if isinstance(message.content, list): message.content += output_attachments else: message.content = [message.content] + output_attachments yield message else: logger.debug(f"completion message with EOM (iter: {n_iter}): {str(message)}") input_messages = input_messages + [message] else: logger.debug(f"completion message (iter: {n_iter}) from the model: {str(message)}") # 1. Start the tool execution step and progress step_id = str(uuid.uuid4()) yield AgentTurnResponseStreamChunk( event=AgentTurnResponseEvent( payload=AgentTurnResponseStepStartPayload( step_type=StepType.tool_execution.value, step_id=step_id, ) ) ) tool_call = message.tool_calls[0] yield AgentTurnResponseStreamChunk( event=AgentTurnResponseEvent( payload=AgentTurnResponseStepProgressPayload( step_type=StepType.tool_execution.value, step_id=step_id, tool_call=tool_call, delta=ToolCallDelta( parse_status=ToolCallParseStatus.in_progress, tool_call=tool_call, ), ) ) ) # If tool is a client tool, yield CompletionMessage and return if tool_call.tool_name in client_tools: # NOTE: mark end_of_message to indicate to client that it may # call the tool and continue the conversation with the tool's response. message.stop_reason = StopReason.end_of_message await self.storage.set_in_progress_tool_call_step( session_id, turn_id, ToolExecutionStep( step_id=step_id, turn_id=turn_id, tool_calls=[tool_call], tool_responses=[], started_at=datetime.now().astimezone().isoformat(), ), ) yield message return # If tool is a builtin server tool, execute it tool_name = tool_call.tool_name if isinstance(tool_name, BuiltinTool): tool_name = tool_name.value async with tracing.span( "tool_execution", { "tool_name": tool_name, "input": message.model_dump_json(), }, ) as span: tool_execution_start_time = datetime.now().astimezone().isoformat() tool_call = message.tool_calls[0] tool_result = await execute_tool_call_maybe( self.tool_runtime_api, session_id, tool_call, toolgroup_args, tool_to_group, ) if tool_result.content is None: raise ValueError( f"Tool call result (id: {tool_call.call_id}, name: {tool_call.tool_name}) does not have any content" ) result_messages = [ ToolResponseMessage( call_id=tool_call.call_id, tool_name=tool_call.tool_name, content=tool_result.content, ) ] assert len(result_messages) == 1, "Currently not supporting multiple messages" result_message = result_messages[0] span.set_attribute("output", result_message.model_dump_json()) yield AgentTurnResponseStreamChunk( event=AgentTurnResponseEvent( payload=AgentTurnResponseStepCompletePayload( step_type=StepType.tool_execution.value, step_id=step_id, step_details=ToolExecutionStep( step_id=step_id, turn_id=turn_id, tool_calls=[tool_call], tool_responses=[ ToolResponse( call_id=result_message.call_id, tool_name=result_message.tool_name, content=result_message.content, metadata=tool_result.metadata, ) ], started_at=tool_execution_start_time, completed_at=datetime.now().astimezone().isoformat(), ), ) ) ) # TODO: add tool-input touchpoint and a "start" event for this step also # but that needs a lot more refactoring of Tool code potentially if (type(result_message.content) is str) and ( out_attachment := _interpret_content_as_attachment(result_message.content) ): # NOTE: when we push this message back to the model, the model may ignore the # attached file path etc. since the model is trained to only provide a user message # with the summary. We keep all generated attachments and then attach them to final message output_attachments.append(out_attachment) input_messages = input_messages + [message, result_message] async def _get_tool_defs( self, toolgroups_for_turn: Optional[List[AgentToolGroup]] = None ) -> Tuple[List[ToolDefinition], Dict[str, str]]: # Determine which tools to include tool_groups_to_include = toolgroups_for_turn or self.agent_config.toolgroups or [] agent_config_toolgroups = [] for toolgroup in tool_groups_to_include: name = toolgroup.name if isinstance(toolgroup, AgentToolGroupWithArgs) else toolgroup if name not in agent_config_toolgroups: agent_config_toolgroups.append(name) tool_name_to_def = {} tool_to_group = {} for tool_def in self.agent_config.client_tools: if tool_name_to_def.get(tool_def.name, None): raise ValueError(f"Tool {tool_def.name} already exists") tool_name_to_def[tool_def.name] = ToolDefinition( tool_name=tool_def.name, description=tool_def.description, parameters={ param.name: ToolParamDefinition( param_type=param.parameter_type, description=param.description, required=param.required, default=param.default, ) for param in tool_def.parameters }, ) tool_to_group[tool_def.name] = "__client_tools__" for toolgroup_name_with_maybe_tool_name in agent_config_toolgroups: toolgroup_name, tool_name = self._parse_toolgroup_name(toolgroup_name_with_maybe_tool_name) tools = await self.tool_groups_api.list_tools(toolgroup_id=toolgroup_name) if not tools.data: available_tool_groups = ", ".join( [t.identifier for t in (await self.tool_groups_api.list_tool_groups()).data] ) raise ValueError(f"Toolgroup {toolgroup_name} not found, available toolgroups: {available_tool_groups}") if tool_name is not None and not any(tool.identifier == tool_name for tool in tools.data): raise ValueError( f"Tool {tool_name} not found in toolgroup {toolgroup_name}. Available tools: {', '.join([tool.identifier for tool in tools.data])}" ) for tool_def in tools.data: if toolgroup_name.startswith("builtin") and toolgroup_name != RAG_TOOL_GROUP: tool_name = tool_def.identifier built_in_type = BuiltinTool.brave_search if tool_name == "web_search": built_in_type = BuiltinTool.brave_search else: built_in_type = BuiltinTool(tool_name) if tool_name_to_def.get(built_in_type, None): raise ValueError(f"Tool {built_in_type} already exists") tool_name_to_def[built_in_type] = ToolDefinition( tool_name=built_in_type, description=tool_def.description, parameters={ param.name: ToolParamDefinition( param_type=param.parameter_type, description=param.description, required=param.required, default=param.default, ) for param in tool_def.parameters }, ) tool_to_group[built_in_type] = tool_def.toolgroup_id continue if tool_name_to_def.get(tool_def.identifier, None): raise ValueError(f"Tool {tool_def.identifier} already exists") if tool_name in (None, tool_def.identifier): tool_name_to_def[tool_def.identifier] = ToolDefinition( tool_name=tool_def.identifier, description=tool_def.description, parameters={ param.name: ToolParamDefinition( param_type=param.parameter_type, description=param.description, required=param.required, default=param.default, ) for param in tool_def.parameters }, ) tool_to_group[tool_def.identifier] = tool_def.toolgroup_id return list(tool_name_to_def.values()), tool_to_group def _parse_toolgroup_name(self, toolgroup_name_with_maybe_tool_name: str) -> tuple[str, Optional[str]]: """Parse a toolgroup name into its components. Args: toolgroup_name: The toolgroup name to parse (e.g. "builtin::rag/knowledge_search") Returns: A tuple of (tool_type, tool_group, tool_name) """ split_names = toolgroup_name_with_maybe_tool_name.split("/") if len(split_names) == 2: # e.g. "builtin::rag" tool_group, tool_name = split_names else: tool_group, tool_name = split_names[0], None return tool_group, tool_name async def handle_documents( self, session_id: str, documents: List[Document], input_messages: List[Message], tool_defs: Dict[str, ToolDefinition], ) -> None: memory_tool = any(tool_def.tool_name == MEMORY_QUERY_TOOL for tool_def in tool_defs) code_interpreter_tool = any(tool_def.tool_name == BuiltinTool.code_interpreter for tool_def in tool_defs) content_items = [] url_items = [] pattern = re.compile("^(https?://|file://|data:)") for d in documents: if isinstance(d.content, URL): url_items.append(d.content) elif pattern.match(d.content): url_items.append(URL(uri=d.content)) else: content_items.append(d) # Save the contents to a tempdir and use its path as a URL if code interpreter is present if code_interpreter_tool: for c in content_items: temp_file_path = os.path.join(self.tempdir, f"{make_random_string()}.txt") with open(temp_file_path, "w") as temp_file: temp_file.write(c.content) url_items.append(URL(uri=f"file://{temp_file_path}")) if memory_tool and code_interpreter_tool: # if both memory and code_interpreter are available, we download the URLs # and attach the data to the last message. msg = await attachment_message(self.tempdir, url_items) input_messages.append(msg) # Since memory is present, add all the data to the memory bank await self.add_to_session_vector_db(session_id, documents) elif code_interpreter_tool: # if only code_interpreter is available, we download the URLs to a tempdir # and attach the path to them as a message to inference with the # assumption that the model invokes the code_interpreter tool with the path msg = await attachment_message(self.tempdir, url_items) input_messages.append(msg) elif memory_tool: # if only memory is available, we load the data from the URLs and content items to the memory bank await self.add_to_session_vector_db(session_id, documents) else: # if no memory or code_interpreter tool is available, # we try to load the data from the URLs and content items as a message to inference # and add it to the last message's context input_messages[-1].context = "\n".join( [doc.content for doc in content_items] + await load_data_from_urls(url_items) ) async def _ensure_vector_db(self, session_id: str) -> str: session_info = await self.storage.get_session_info(session_id) if session_info is None: raise ValueError(f"Session {session_id} not found") if session_info.vector_db_id is None: vector_db_id = f"vector_db_{session_id}" # TODO: the semantic for registration is definitely not "creation" # so we need to fix it if we expect the agent to create a new vector db # for each session await self.vector_io_api.register_vector_db( vector_db_id=vector_db_id, embedding_model="all-MiniLM-L6-v2", ) await self.storage.add_vector_db_to_session(session_id, vector_db_id) else: vector_db_id = session_info.vector_db_id return vector_db_id async def add_to_session_vector_db(self, session_id: str, data: List[Document]) -> None: vector_db_id = await self._ensure_vector_db(session_id) documents = [ RAGDocument( document_id=str(uuid.uuid4()), content=a.content, mime_type=a.mime_type, metadata={}, ) for a in data ] await self.tool_runtime_api.rag_tool.insert( documents=documents, vector_db_id=vector_db_id, chunk_size_in_tokens=512, ) async def load_data_from_urls(urls: List[URL]) -> List[str]: data = [] for url in urls: uri = url.uri if uri.startswith("file://"): filepath = uri[len("file://") :] with open(filepath, "r") as f: data.append(f.read()) elif uri.startswith("http"): async with httpx.AsyncClient() as client: r = await client.get(uri) resp = r.text data.append(resp) return data async def attachment_message(tempdir: str, urls: List[URL]) -> ToolResponseMessage: content = [] for url in urls: uri = url.uri if uri.startswith("file://"): filepath = uri[len("file://") :] elif uri.startswith("http"): path = urlparse(uri).path basename = os.path.basename(path) filepath = f"{tempdir}/{make_random_string() + basename}" logger.info(f"Downloading {url} -> {filepath}") async with httpx.AsyncClient() as client: r = await client.get(uri) resp = r.text with open(filepath, "w") as fp: fp.write(resp) else: raise ValueError(f"Unsupported URL {url}") content.append( TextContentItem( text=f'# User provided a file accessible to you at "{filepath}"\nYou can use code_interpreter to load and inspect it.' ) ) return ToolResponseMessage( call_id="", tool_name=BuiltinTool.code_interpreter, content=content, ) async def execute_tool_call_maybe( tool_runtime_api: ToolRuntime, session_id: str, tool_call: ToolCall, toolgroup_args: Dict[str, Dict[str, Any]], tool_to_group: Dict[str, str], ) -> ToolInvocationResult: name = tool_call.tool_name group_name = tool_to_group.get(name, None) if group_name is None: raise ValueError(f"Tool {name} not found in any tool group") if isinstance(name, BuiltinTool): if name == BuiltinTool.brave_search: name = WEB_SEARCH_TOOL else: name = name.value logger.info(f"executing tool call: {name} with args: {tool_call.arguments}") result = await tool_runtime_api.invoke_tool( tool_name=name, kwargs={ "session_id": session_id, # get the arguments generated by the model and augment with toolgroup arg overrides for the agent **tool_call.arguments, **toolgroup_args.get(group_name, {}), }, ) logger.info(f"tool call {name} completed with result: {result}") return result def _interpret_content_as_attachment( content: str, ) -> Optional[Attachment]: match = re.search(TOOLS_ATTACHMENT_KEY_REGEX, content) if match: snippet = match.group(1) data = json.loads(snippet) return Attachment( url=URL(uri="file://" + data["filepath"]), mime_type=data["mimetype"], ) return None