# Meta Reference Distribution The `llamastack/distribution-meta-reference-gpu` distribution consists of the following provider configurations. | **API** | **Inference** | **Agents** | **Memory** | **Safety** | **Telemetry** | |----------------- |--------------- |---------------- |-------------------------------------------------- |---------------- |---------------- | | **Provider(s)** | meta-reference | meta-reference | meta-reference, remote::pgvector, remote::chroma | meta-reference | meta-reference | ### Step 0. Prerequisite - Downloading Models Please make sure you have llama model checkpoints downloaded in `~/.llama` before proceeding. See [installation guide](https://llama-stack.readthedocs.io/en/latest/cli_reference/download_models.html) here to download the models. ``` $ ls ~/.llama/checkpoints Llama3.1-8B Llama3.2-11B-Vision-Instruct Llama3.2-1B-Instruct Llama3.2-90B-Vision-Instruct Llama-Guard-3-8B Llama3.1-8B-Instruct Llama3.2-1B Llama3.2-3B-Instruct Llama-Guard-3-1B Prompt-Guard-86M ``` ### Step 1. Start the Distribution #### (Option 1) Start with Docker ``` $ cd distributions/meta-reference-gpu && docker compose up ``` > [!NOTE] > This assumes you have access to GPU to start a local server with access to your GPU. > [!NOTE] > `~/.llama` should be the path containing downloaded weights of Llama models. This will download and start running a pre-built docker container. Alternatively, you may use the following commands: ``` docker run -it -p 5000:5000 -v ~/.llama:/root/.llama -v ./run.yaml:/root/my-run.yaml --gpus=all distribution-meta-reference-gpu --yaml_config /root/my-run.yaml ``` #### (Option 2) Start with Conda 1. Install the `llama` CLI. See [CLI Reference](https://llama-stack.readthedocs.io/en/latest/cli_reference/index.html) 2. Build the `meta-reference-gpu` distribution ``` $ llama stack build --template meta-reference-gpu --image-type conda ``` 3. Start running distribution ``` $ cd distributions/meta-reference-gpu $ llama stack run ./run.yaml ``` ### (Optional) Serving a new model You may change the `config.model` in `run.yaml` to update the model currently being served by the distribution. Make sure you have the model checkpoint downloaded in your `~/.llama`. ``` inference: - provider_id: meta0 provider_type: inline::meta-reference config: model: Llama3.2-11B-Vision-Instruct quantization: null torch_seed: null max_seq_len: 4096 max_batch_size: 1 ``` Run `llama model list` to see the available models to download, and `llama model download` to download the checkpoints.