forked from phoenix-oss/llama-stack-mirror
Lint check in main branch is failing. This fixes the lint check after we moved to ruff in https://github.com/meta-llama/llama-stack/pull/921. We need to move to a `ruff.toml` file as well as fixing and ignoring some additional checks. Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
74 lines
2.7 KiB
Python
74 lines
2.7 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from typing import Any, Dict, Optional
|
|
|
|
from pydantic import BaseModel, field_validator
|
|
|
|
from llama_stack.apis.inference import QuantizationConfig
|
|
|
|
from llama_stack.providers.utils.inference import supported_inference_models
|
|
|
|
|
|
class MetaReferenceInferenceConfig(BaseModel):
|
|
# this is a placeholder to indicate inference model id
|
|
# the actual inference model id is dtermined by the moddel id in the request
|
|
# Note: you need to register the model before using it for inference
|
|
# models in the resouce list in the run.yaml config will be registered automatically
|
|
model: Optional[str] = None
|
|
torch_seed: Optional[int] = None
|
|
max_seq_len: int = 4096
|
|
max_batch_size: int = 1
|
|
|
|
# when this is False, we assume that the distributed process group is setup by someone
|
|
# outside of this code (e.g., when run inside `torchrun`). that is useful for clients
|
|
# (including our testing code) who might be using llama-stack as a library.
|
|
create_distributed_process_group: bool = True
|
|
|
|
# By default, the implementation will look at ~/.llama/checkpoints/<model> but you
|
|
# can override by specifying the directory explicitly
|
|
checkpoint_dir: Optional[str] = None
|
|
|
|
@field_validator("model")
|
|
@classmethod
|
|
def validate_model(cls, model: str) -> str:
|
|
permitted_models = supported_inference_models()
|
|
descriptors = [m.descriptor() for m in permitted_models]
|
|
repos = [m.huggingface_repo for m in permitted_models]
|
|
if model not in (descriptors + repos):
|
|
model_list = "\n\t".join(repos)
|
|
raise ValueError(f"Unknown model: `{model}`. Choose from [\n\t{model_list}\n]")
|
|
return model
|
|
|
|
@classmethod
|
|
def sample_run_config(
|
|
cls,
|
|
model: str = "Llama3.2-3B-Instruct",
|
|
checkpoint_dir: str = "${env.CHECKPOINT_DIR:null}",
|
|
**kwargs,
|
|
) -> Dict[str, Any]:
|
|
return {
|
|
"model": model,
|
|
"max_seq_len": 4096,
|
|
"checkpoint_dir": checkpoint_dir,
|
|
}
|
|
|
|
|
|
class MetaReferenceQuantizedInferenceConfig(MetaReferenceInferenceConfig):
|
|
quantization: QuantizationConfig
|
|
|
|
@classmethod
|
|
def sample_run_config(
|
|
cls,
|
|
model: str = "Llama3.2-3B-Instruct",
|
|
checkpoint_dir: str = "${env.CHECKPOINT_DIR:null}",
|
|
**kwargs,
|
|
) -> Dict[str, Any]:
|
|
config = super().sample_run_config(model, checkpoint_dir, **kwargs)
|
|
config["quantization"] = {
|
|
"type": "fp8",
|
|
}
|
|
return config
|