forked from phoenix-oss/llama-stack-mirror
# What does this PR do? We added: * make sure docstrings are present with 'params' and 'returns' * fail if someone sets 'returns: None' * fix the failing APIs Signed-off-by: Sébastien Han <seb@redhat.com>
253 lines
7 KiB
Python
253 lines
7 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from datetime import datetime
|
|
from enum import Enum
|
|
from typing import Annotated, Any, Literal, Protocol
|
|
|
|
from pydantic import BaseModel, Field
|
|
|
|
from llama_stack.apis.common.content_types import URL
|
|
from llama_stack.apis.common.job_types import JobStatus
|
|
from llama_stack.apis.common.training_types import Checkpoint
|
|
from llama_stack.schema_utils import json_schema_type, register_schema, webmethod
|
|
|
|
|
|
@json_schema_type
|
|
class OptimizerType(Enum):
|
|
adam = "adam"
|
|
adamw = "adamw"
|
|
sgd = "sgd"
|
|
|
|
|
|
@json_schema_type
|
|
class DatasetFormat(Enum):
|
|
instruct = "instruct"
|
|
dialog = "dialog"
|
|
|
|
|
|
@json_schema_type
|
|
class DataConfig(BaseModel):
|
|
dataset_id: str
|
|
batch_size: int
|
|
shuffle: bool
|
|
data_format: DatasetFormat
|
|
validation_dataset_id: str | None = None
|
|
packed: bool | None = False
|
|
train_on_input: bool | None = False
|
|
|
|
|
|
@json_schema_type
|
|
class OptimizerConfig(BaseModel):
|
|
optimizer_type: OptimizerType
|
|
lr: float
|
|
weight_decay: float
|
|
num_warmup_steps: int
|
|
|
|
|
|
@json_schema_type
|
|
class EfficiencyConfig(BaseModel):
|
|
enable_activation_checkpointing: bool | None = False
|
|
enable_activation_offloading: bool | None = False
|
|
memory_efficient_fsdp_wrap: bool | None = False
|
|
fsdp_cpu_offload: bool | None = False
|
|
|
|
|
|
@json_schema_type
|
|
class TrainingConfig(BaseModel):
|
|
n_epochs: int
|
|
max_steps_per_epoch: int = 1
|
|
gradient_accumulation_steps: int = 1
|
|
max_validation_steps: int | None = 1
|
|
data_config: DataConfig | None = None
|
|
optimizer_config: OptimizerConfig | None = None
|
|
efficiency_config: EfficiencyConfig | None = None
|
|
dtype: str | None = "bf16"
|
|
|
|
|
|
@json_schema_type
|
|
class LoraFinetuningConfig(BaseModel):
|
|
type: Literal["LoRA"] = "LoRA"
|
|
lora_attn_modules: list[str]
|
|
apply_lora_to_mlp: bool
|
|
apply_lora_to_output: bool
|
|
rank: int
|
|
alpha: int
|
|
use_dora: bool | None = False
|
|
quantize_base: bool | None = False
|
|
|
|
|
|
@json_schema_type
|
|
class QATFinetuningConfig(BaseModel):
|
|
type: Literal["QAT"] = "QAT"
|
|
quantizer_name: str
|
|
group_size: int
|
|
|
|
|
|
AlgorithmConfig = Annotated[LoraFinetuningConfig | QATFinetuningConfig, Field(discriminator="type")]
|
|
register_schema(AlgorithmConfig, name="AlgorithmConfig")
|
|
|
|
|
|
@json_schema_type
|
|
class PostTrainingJobLogStream(BaseModel):
|
|
"""Stream of logs from a finetuning job."""
|
|
|
|
job_uuid: str
|
|
log_lines: list[str]
|
|
|
|
|
|
@json_schema_type
|
|
class RLHFAlgorithm(Enum):
|
|
dpo = "dpo"
|
|
|
|
|
|
@json_schema_type
|
|
class DPOAlignmentConfig(BaseModel):
|
|
reward_scale: float
|
|
reward_clip: float
|
|
epsilon: float
|
|
gamma: float
|
|
|
|
|
|
@json_schema_type
|
|
class PostTrainingRLHFRequest(BaseModel):
|
|
"""Request to finetune a model."""
|
|
|
|
job_uuid: str
|
|
|
|
finetuned_model: URL
|
|
|
|
dataset_id: str
|
|
validation_dataset_id: str
|
|
|
|
algorithm: RLHFAlgorithm
|
|
algorithm_config: DPOAlignmentConfig
|
|
|
|
optimizer_config: OptimizerConfig
|
|
training_config: TrainingConfig
|
|
|
|
# TODO: define these
|
|
hyperparam_search_config: dict[str, Any]
|
|
logger_config: dict[str, Any]
|
|
|
|
|
|
class PostTrainingJob(BaseModel):
|
|
job_uuid: str
|
|
|
|
|
|
@json_schema_type
|
|
class PostTrainingJobStatusResponse(BaseModel):
|
|
"""Status of a finetuning job."""
|
|
|
|
job_uuid: str
|
|
status: JobStatus
|
|
|
|
scheduled_at: datetime | None = None
|
|
started_at: datetime | None = None
|
|
completed_at: datetime | None = None
|
|
|
|
resources_allocated: dict[str, Any] | None = None
|
|
|
|
checkpoints: list[Checkpoint] = Field(default_factory=list)
|
|
|
|
|
|
class ListPostTrainingJobsResponse(BaseModel):
|
|
data: list[PostTrainingJob]
|
|
|
|
|
|
@json_schema_type
|
|
class PostTrainingJobArtifactsResponse(BaseModel):
|
|
"""Artifacts of a finetuning job."""
|
|
|
|
job_uuid: str
|
|
checkpoints: list[Checkpoint] = Field(default_factory=list)
|
|
|
|
# TODO(ashwin): metrics, evals
|
|
|
|
|
|
class PostTraining(Protocol):
|
|
@webmethod(route="/post-training/supervised-fine-tune", method="POST")
|
|
async def supervised_fine_tune(
|
|
self,
|
|
job_uuid: str,
|
|
training_config: TrainingConfig,
|
|
hyperparam_search_config: dict[str, Any],
|
|
logger_config: dict[str, Any],
|
|
model: str | None = Field(
|
|
default=None,
|
|
description="Model descriptor for training if not in provider config`",
|
|
),
|
|
checkpoint_dir: str | None = None,
|
|
algorithm_config: AlgorithmConfig | None = None,
|
|
) -> PostTrainingJob:
|
|
"""Run supervised fine-tuning of a model.
|
|
|
|
:param job_uuid: The UUID of the job to create.
|
|
:param training_config: The training configuration.
|
|
:param hyperparam_search_config: The hyperparam search configuration.
|
|
:param logger_config: The logger configuration.
|
|
:param model: The model to fine-tune.
|
|
:param checkpoint_dir: The directory to save checkpoint(s) to.
|
|
:param algorithm_config: The algorithm configuration.
|
|
:returns: A PostTrainingJob.
|
|
"""
|
|
...
|
|
|
|
@webmethod(route="/post-training/preference-optimize", method="POST")
|
|
async def preference_optimize(
|
|
self,
|
|
job_uuid: str,
|
|
finetuned_model: str,
|
|
algorithm_config: DPOAlignmentConfig,
|
|
training_config: TrainingConfig,
|
|
hyperparam_search_config: dict[str, Any],
|
|
logger_config: dict[str, Any],
|
|
) -> PostTrainingJob:
|
|
"""Run preference optimization of a model.
|
|
|
|
:param job_uuid: The UUID of the job to create.
|
|
:param finetuned_model: The model to fine-tune.
|
|
:param algorithm_config: The algorithm configuration.
|
|
:param training_config: The training configuration.
|
|
:param hyperparam_search_config: The hyperparam search configuration.
|
|
:param logger_config: The logger configuration.
|
|
:returns: A PostTrainingJob.
|
|
"""
|
|
...
|
|
|
|
@webmethod(route="/post-training/jobs", method="GET")
|
|
async def get_training_jobs(self) -> ListPostTrainingJobsResponse:
|
|
"""Get all training jobs.
|
|
|
|
:returns: A ListPostTrainingJobsResponse.
|
|
"""
|
|
...
|
|
|
|
@webmethod(route="/post-training/job/status", method="GET")
|
|
async def get_training_job_status(self, job_uuid: str) -> PostTrainingJobStatusResponse:
|
|
"""Get the status of a training job.
|
|
|
|
:param job_uuid: The UUID of the job to get the status of.
|
|
:returns: A PostTrainingJobStatusResponse.
|
|
"""
|
|
...
|
|
|
|
@webmethod(route="/post-training/job/cancel", method="POST")
|
|
async def cancel_training_job(self, job_uuid: str) -> None:
|
|
"""Cancel a training job.
|
|
|
|
:param job_uuid: The UUID of the job to cancel.
|
|
"""
|
|
...
|
|
|
|
@webmethod(route="/post-training/job/artifacts", method="GET")
|
|
async def get_training_job_artifacts(self, job_uuid: str) -> PostTrainingJobArtifactsResponse:
|
|
"""Get the artifacts of a training job.
|
|
|
|
:param job_uuid: The UUID of the job to get the artifacts of.
|
|
:returns: A PostTrainingJobArtifactsResponse.
|
|
"""
|
|
...
|