llama-stack/llama_stack/providers/inline/post_training/huggingface/post_training.py
Charlie Doern f02f7b28c1
feat: add huggingface post_training impl (#2132)
# What does this PR do?


adds an inline HF SFTTrainer provider. Alongside touchtune -- this is a
super popular option for running training jobs. The config allows a user
to specify some key fields such as a model, chat_template, device, etc

the provider comes with one recipe `finetune_single_device` which works
both with and without LoRA.

any model that is a valid HF identifier can be given and the model will
be pulled.

this has been tested so far with CPU and MPS device types, but should be
compatible with CUDA out of the box

The provider processes the given dataset into the proper format,
establishes the various steps per epoch, steps per save, steps per eval,
sets a sane SFTConfig, and runs n_epochs of training

if checkpoint_dir is none, no model is saved. If there is a checkpoint
dir, a model is saved every `save_steps` and at the end of training.


## Test Plan

re-enabled post_training integration test suite with a singular test
that loads the simpleqa dataset:
https://huggingface.co/datasets/llamastack/simpleqa and a tiny granite
model: https://huggingface.co/ibm-granite/granite-3.3-2b-instruct. The
test now uses the llama stack client and the proper post_training API

runs one step with a batch_size of 1. This test runs on CPU on the
Ubuntu runner so it needs to be a small batch and a single step.

[//]: # (## Documentation)

---------

Signed-off-by: Charlie Doern <cdoern@redhat.com>
2025-05-16 14:41:28 -07:00

176 lines
6.4 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from enum import Enum
from typing import Any
from llama_stack.apis.datasetio import DatasetIO
from llama_stack.apis.datasets import Datasets
from llama_stack.apis.post_training import (
AlgorithmConfig,
Checkpoint,
DPOAlignmentConfig,
JobStatus,
ListPostTrainingJobsResponse,
PostTrainingJob,
PostTrainingJobArtifactsResponse,
PostTrainingJobStatusResponse,
TrainingConfig,
)
from llama_stack.providers.inline.post_training.huggingface.config import (
HuggingFacePostTrainingConfig,
)
from llama_stack.providers.inline.post_training.huggingface.recipes.finetune_single_device import (
HFFinetuningSingleDevice,
)
from llama_stack.providers.utils.scheduler import JobArtifact, Scheduler
from llama_stack.providers.utils.scheduler import JobStatus as SchedulerJobStatus
from llama_stack.schema_utils import webmethod
class TrainingArtifactType(Enum):
CHECKPOINT = "checkpoint"
RESOURCES_STATS = "resources_stats"
_JOB_TYPE_SUPERVISED_FINE_TUNE = "supervised-fine-tune"
class HuggingFacePostTrainingImpl:
def __init__(
self,
config: HuggingFacePostTrainingConfig,
datasetio_api: DatasetIO,
datasets: Datasets,
) -> None:
self.config = config
self.datasetio_api = datasetio_api
self.datasets_api = datasets
self._scheduler = Scheduler()
async def shutdown(self) -> None:
await self._scheduler.shutdown()
@staticmethod
def _checkpoint_to_artifact(checkpoint: Checkpoint) -> JobArtifact:
return JobArtifact(
type=TrainingArtifactType.CHECKPOINT.value,
name=checkpoint.identifier,
uri=checkpoint.path,
metadata=dict(checkpoint),
)
@staticmethod
def _resources_stats_to_artifact(resources_stats: dict[str, Any]) -> JobArtifact:
return JobArtifact(
type=TrainingArtifactType.RESOURCES_STATS.value,
name=TrainingArtifactType.RESOURCES_STATS.value,
metadata=resources_stats,
)
async def supervised_fine_tune(
self,
job_uuid: str,
training_config: TrainingConfig,
hyperparam_search_config: dict[str, Any],
logger_config: dict[str, Any],
model: str,
checkpoint_dir: str | None = None,
algorithm_config: AlgorithmConfig | None = None,
) -> PostTrainingJob:
async def handler(on_log_message_cb, on_status_change_cb, on_artifact_collected_cb):
on_log_message_cb("Starting HF finetuning")
recipe = HFFinetuningSingleDevice(
job_uuid=job_uuid,
datasetio_api=self.datasetio_api,
datasets_api=self.datasets_api,
)
resources_allocated, checkpoints = await recipe.train(
model=model,
output_dir=checkpoint_dir,
job_uuid=job_uuid,
lora_config=algorithm_config,
config=training_config,
provider_config=self.config,
)
on_artifact_collected_cb(self._resources_stats_to_artifact(resources_allocated))
if checkpoints:
for checkpoint in checkpoints:
artifact = self._checkpoint_to_artifact(checkpoint)
on_artifact_collected_cb(artifact)
on_status_change_cb(SchedulerJobStatus.completed)
on_log_message_cb("HF finetuning completed")
job_uuid = self._scheduler.schedule(_JOB_TYPE_SUPERVISED_FINE_TUNE, job_uuid, handler)
return PostTrainingJob(job_uuid=job_uuid)
async def preference_optimize(
self,
job_uuid: str,
finetuned_model: str,
algorithm_config: DPOAlignmentConfig,
training_config: TrainingConfig,
hyperparam_search_config: dict[str, Any],
logger_config: dict[str, Any],
) -> PostTrainingJob:
raise NotImplementedError("DPO alignment is not implemented yet")
async def get_training_jobs(self) -> ListPostTrainingJobsResponse:
return ListPostTrainingJobsResponse(
data=[PostTrainingJob(job_uuid=job.id) for job in self._scheduler.get_jobs()]
)
@staticmethod
def _get_artifacts_metadata_by_type(job, artifact_type):
return [artifact.metadata for artifact in job.artifacts if artifact.type == artifact_type]
@classmethod
def _get_checkpoints(cls, job):
return cls._get_artifacts_metadata_by_type(job, TrainingArtifactType.CHECKPOINT.value)
@classmethod
def _get_resources_allocated(cls, job):
data = cls._get_artifacts_metadata_by_type(job, TrainingArtifactType.RESOURCES_STATS.value)
return data[0] if data else None
@webmethod(route="/post-training/job/status")
async def get_training_job_status(self, job_uuid: str) -> PostTrainingJobStatusResponse | None:
job = self._scheduler.get_job(job_uuid)
match job.status:
# TODO: Add support for other statuses to API
case SchedulerJobStatus.new | SchedulerJobStatus.scheduled:
status = JobStatus.scheduled
case SchedulerJobStatus.running:
status = JobStatus.in_progress
case SchedulerJobStatus.completed:
status = JobStatus.completed
case SchedulerJobStatus.failed:
status = JobStatus.failed
case _:
raise NotImplementedError()
return PostTrainingJobStatusResponse(
job_uuid=job_uuid,
status=status,
scheduled_at=job.scheduled_at,
started_at=job.started_at,
completed_at=job.completed_at,
checkpoints=self._get_checkpoints(job),
resources_allocated=self._get_resources_allocated(job),
)
@webmethod(route="/post-training/job/cancel")
async def cancel_training_job(self, job_uuid: str) -> None:
self._scheduler.cancel(job_uuid)
@webmethod(route="/post-training/job/artifacts")
async def get_training_job_artifacts(self, job_uuid: str) -> PostTrainingJobArtifactsResponse | None:
job = self._scheduler.get_job(job_uuid)
return PostTrainingJobArtifactsResponse(job_uuid=job_uuid, checkpoints=self._get_checkpoints(job))