llama-stack/llama_stack/apis/agents/agents.py
Mengtao Yuan 1086b500f9
Support Tavily as built-in search tool. (#485)
# What does this PR do?

Add Tavily as a built-in search tool, in addition to Brave and Bing.

## Test Plan

It's tested using ollama remote, showing parity to the Brave search
tool.
- Install and run ollama with `ollama run llama3.1:8b-instruct-fp16`
- Build ollama distribution `llama stack build --template ollama
--image-type conda`
- Run ollama `stack run
/$USER/.llama/distributions/llamastack-ollama/ollama-run.yaml --port
5001`
- Client test command: `python - m
agents.test_agents.TestAgents.test_create_agent_turn_with_tavily_search`,
with enviroments:

MASTER_ADDR=0.0.0.0;MASTER_PORT=5001;RANK=0;REMOTE_STACK_HOST=0.0.0.0;REMOTE_STACK_PORT=5001;TAVILY_SEARCH_API_KEY=tvly-<YOUR-KEY>;WORLD_SIZE=1

Test passes on the specific case (ollama remote).

Server output: 
```
Listening on ['::', '0.0.0.0']:5001
INFO:     Started server process [7220]
INFO:     Waiting for application startup.
INFO:     Application startup complete.
INFO:     Uvicorn running on http://['::', '0.0.0.0']:5001 (Press CTRL+C to quit)
INFO:     127.0.0.1:65209 - "POST /agents/create HTTP/1.1" 200 OK
INFO:     127.0.0.1:65210 - "POST /agents/session/create HTTP/1.1" 200 OK
INFO:     127.0.0.1:65211 - "POST /agents/turn/create HTTP/1.1" 200 OK
role='user' content='What are the latest developments in quantum computing?' context=None
role='assistant' content='' stop_reason=<StopReason.end_of_turn: 'end_of_turn'> tool_calls=[ToolCall(call_id='fc92ccb8-1039-4ce8-ba5e-8f2b0147661c', tool_name=<BuiltinTool.brave_search: 'brave_search'>, arguments={'query': 'latest developments in quantum computing'})]
role='ipython' call_id='fc92ccb8-1039-4ce8-ba5e-8f2b0147661c' tool_name=<BuiltinTool.brave_search: 'brave_search'> content='{"query": "latest developments in quantum computing", "top_k": [{"title": "IBM Unveils 400 Qubit-Plus Quantum Processor and Next-Generation IBM ...", "url": "https://newsroom.ibm.com/2022-11-09-IBM-Unveils-400-Qubit-Plus-Quantum-Processor-and-Next-Generation-IBM-Quantum-System-Two", "content": "This system is targeted to be online by the end of 2023 and will be a building b...<more>...onnect large-scale ...", "url": "https://news.mit.edu/2023/quantum-interconnects-photon-emission-0105", "content": "Quantum computers hold the promise of performing certain tasks that are intractable even on the world\'s most powerful supercomputers. In the future, scientists anticipate using quantum computing to emulate materials systems, simulate quantum chemistry, and optimize hard tasks, with impacts potentially spanning finance to pharmaceuticals.", "score": 0.71721, "raw_content": null}]}'
Assistant: The latest developments in quantum computing include:

* IBM unveiling its 400 qubit-plus quantum processor and next-generation IBM Quantum System Two, which will be a building block of quantum-centric supercomputing.
* The development of utility-scale quantum computing, which can serve as a scientific tool to explore utility-scale classes of problems in chemistry, physics, and materials beyond brute force classical simulation of quantum mechanics.
* The introduction of advanced hardware across IBM's global fleet of 100+ qubit systems, as well as easy-to-use software that users and computational scientists can now obtain reliable results from quantum systems as they map increasingly larger and more complex problems to quantum circuits.
* Research on quantum repeaters, which use defects in diamond to interconnect quantum systems and could provide the foundation for scalable quantum networking.
* The development of a new source of quantum light, which could be used to improve the efficiency of quantum computers.
* The creation of a new mathematical "blueprint" that is accelerating fusion device development using Dyson maps.
* Research on canceling noise to improve quantum devices, with MIT researchers developing a protocol to extend the life of quantum coherence.
```

Verified with tool response. The final model response is updated with
the search requests.

## Sources

## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Ran pre-commit to handle lint / formatting issues.
- [x] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [x] Updated relevant documentation.
- [x] Wrote necessary unit or integration tests.

Co-authored-by: Martin Yuan <myuan@meta.com>
2024-11-19 20:59:02 -08:00

475 lines
13 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from datetime import datetime
from enum import Enum
from typing import (
Any,
AsyncIterator,
Dict,
List,
Literal,
Optional,
Protocol,
runtime_checkable,
Union,
)
from llama_models.schema_utils import json_schema_type, webmethod
from pydantic import BaseModel, ConfigDict, Field
from typing_extensions import Annotated
from llama_models.llama3.api.datatypes import * # noqa: F403
from llama_stack.apis.common.deployment_types import * # noqa: F403
from llama_stack.apis.inference import * # noqa: F403
from llama_stack.apis.safety import * # noqa: F403
from llama_stack.apis.memory import * # noqa: F403
@json_schema_type
class Attachment(BaseModel):
content: InterleavedTextMedia | URL
mime_type: str
class AgentTool(Enum):
brave_search = "brave_search"
wolfram_alpha = "wolfram_alpha"
photogen = "photogen"
code_interpreter = "code_interpreter"
function_call = "function_call"
memory = "memory"
class ToolDefinitionCommon(BaseModel):
input_shields: Optional[List[str]] = Field(default_factory=list)
output_shields: Optional[List[str]] = Field(default_factory=list)
class SearchEngineType(Enum):
bing = "bing"
brave = "brave"
tavily = "tavily"
@json_schema_type
class SearchToolDefinition(ToolDefinitionCommon):
# NOTE: brave_search is just a placeholder since model always uses
# brave_search as tool call name
type: Literal[AgentTool.brave_search.value] = AgentTool.brave_search.value
api_key: str
engine: SearchEngineType = SearchEngineType.brave
remote_execution: Optional[RestAPIExecutionConfig] = None
@json_schema_type
class WolframAlphaToolDefinition(ToolDefinitionCommon):
type: Literal[AgentTool.wolfram_alpha.value] = AgentTool.wolfram_alpha.value
api_key: str
remote_execution: Optional[RestAPIExecutionConfig] = None
@json_schema_type
class PhotogenToolDefinition(ToolDefinitionCommon):
type: Literal[AgentTool.photogen.value] = AgentTool.photogen.value
remote_execution: Optional[RestAPIExecutionConfig] = None
@json_schema_type
class CodeInterpreterToolDefinition(ToolDefinitionCommon):
type: Literal[AgentTool.code_interpreter.value] = AgentTool.code_interpreter.value
enable_inline_code_execution: bool = True
remote_execution: Optional[RestAPIExecutionConfig] = None
@json_schema_type
class FunctionCallToolDefinition(ToolDefinitionCommon):
type: Literal[AgentTool.function_call.value] = AgentTool.function_call.value
function_name: str
description: str
parameters: Dict[str, ToolParamDefinition]
remote_execution: Optional[RestAPIExecutionConfig] = None
class _MemoryBankConfigCommon(BaseModel):
bank_id: str
class AgentVectorMemoryBankConfig(_MemoryBankConfigCommon):
type: Literal[MemoryBankType.vector.value] = MemoryBankType.vector.value
class AgentKeyValueMemoryBankConfig(_MemoryBankConfigCommon):
type: Literal[MemoryBankType.keyvalue.value] = MemoryBankType.keyvalue.value
keys: List[str] # what keys to focus on
class AgentKeywordMemoryBankConfig(_MemoryBankConfigCommon):
type: Literal[MemoryBankType.keyword.value] = MemoryBankType.keyword.value
class AgentGraphMemoryBankConfig(_MemoryBankConfigCommon):
type: Literal[MemoryBankType.graph.value] = MemoryBankType.graph.value
entities: List[str] # what entities to focus on
MemoryBankConfig = Annotated[
Union[
AgentVectorMemoryBankConfig,
AgentKeyValueMemoryBankConfig,
AgentKeywordMemoryBankConfig,
AgentGraphMemoryBankConfig,
],
Field(discriminator="type"),
]
class MemoryQueryGenerator(Enum):
default = "default"
llm = "llm"
custom = "custom"
class DefaultMemoryQueryGeneratorConfig(BaseModel):
type: Literal[MemoryQueryGenerator.default.value] = (
MemoryQueryGenerator.default.value
)
sep: str = " "
class LLMMemoryQueryGeneratorConfig(BaseModel):
type: Literal[MemoryQueryGenerator.llm.value] = MemoryQueryGenerator.llm.value
model: str
template: str
class CustomMemoryQueryGeneratorConfig(BaseModel):
type: Literal[MemoryQueryGenerator.custom.value] = MemoryQueryGenerator.custom.value
MemoryQueryGeneratorConfig = Annotated[
Union[
DefaultMemoryQueryGeneratorConfig,
LLMMemoryQueryGeneratorConfig,
CustomMemoryQueryGeneratorConfig,
],
Field(discriminator="type"),
]
@json_schema_type
class MemoryToolDefinition(ToolDefinitionCommon):
type: Literal[AgentTool.memory.value] = AgentTool.memory.value
memory_bank_configs: List[MemoryBankConfig] = Field(default_factory=list)
# This config defines how a query is generated using the messages
# for memory bank retrieval.
query_generator_config: MemoryQueryGeneratorConfig = Field(
default=DefaultMemoryQueryGeneratorConfig()
)
max_tokens_in_context: int = 4096
max_chunks: int = 10
AgentToolDefinition = Annotated[
Union[
SearchToolDefinition,
WolframAlphaToolDefinition,
PhotogenToolDefinition,
CodeInterpreterToolDefinition,
FunctionCallToolDefinition,
MemoryToolDefinition,
],
Field(discriminator="type"),
]
class StepCommon(BaseModel):
turn_id: str
step_id: str
started_at: Optional[datetime] = None
completed_at: Optional[datetime] = None
class StepType(Enum):
inference = "inference"
tool_execution = "tool_execution"
shield_call = "shield_call"
memory_retrieval = "memory_retrieval"
@json_schema_type
class InferenceStep(StepCommon):
model_config = ConfigDict(protected_namespaces=())
step_type: Literal[StepType.inference.value] = StepType.inference.value
model_response: CompletionMessage
@json_schema_type
class ToolExecutionStep(StepCommon):
step_type: Literal[StepType.tool_execution.value] = StepType.tool_execution.value
tool_calls: List[ToolCall]
tool_responses: List[ToolResponse]
@json_schema_type
class ShieldCallStep(StepCommon):
step_type: Literal[StepType.shield_call.value] = StepType.shield_call.value
violation: Optional[SafetyViolation]
@json_schema_type
class MemoryRetrievalStep(StepCommon):
step_type: Literal[StepType.memory_retrieval.value] = (
StepType.memory_retrieval.value
)
memory_bank_ids: List[str]
inserted_context: InterleavedTextMedia
Step = Annotated[
Union[
InferenceStep,
ToolExecutionStep,
ShieldCallStep,
MemoryRetrievalStep,
],
Field(discriminator="step_type"),
]
@json_schema_type
class Turn(BaseModel):
"""A single turn in an interaction with an Agentic System."""
turn_id: str
session_id: str
input_messages: List[
Union[
UserMessage,
ToolResponseMessage,
]
]
steps: List[Step]
output_message: CompletionMessage
output_attachments: List[Attachment] = Field(default_factory=list)
started_at: datetime
completed_at: Optional[datetime] = None
@json_schema_type
class Session(BaseModel):
"""A single session of an interaction with an Agentic System."""
session_id: str
session_name: str
turns: List[Turn]
started_at: datetime
memory_bank: Optional[MemoryBank] = None
class AgentConfigCommon(BaseModel):
sampling_params: Optional[SamplingParams] = SamplingParams()
input_shields: Optional[List[str]] = Field(default_factory=list)
output_shields: Optional[List[str]] = Field(default_factory=list)
tools: Optional[List[AgentToolDefinition]] = Field(default_factory=list)
tool_choice: Optional[ToolChoice] = Field(default=ToolChoice.auto)
tool_prompt_format: Optional[ToolPromptFormat] = Field(
default=ToolPromptFormat.json
)
max_infer_iters: int = 10
@json_schema_type
class AgentConfig(AgentConfigCommon):
model: str
instructions: str
enable_session_persistence: bool
class AgentConfigOverridablePerTurn(AgentConfigCommon):
instructions: Optional[str] = None
class AgentTurnResponseEventType(Enum):
step_start = "step_start"
step_complete = "step_complete"
step_progress = "step_progress"
turn_start = "turn_start"
turn_complete = "turn_complete"
@json_schema_type
class AgentTurnResponseStepStartPayload(BaseModel):
event_type: Literal[AgentTurnResponseEventType.step_start.value] = (
AgentTurnResponseEventType.step_start.value
)
step_type: StepType
step_id: str
metadata: Optional[Dict[str, Any]] = Field(default_factory=dict)
@json_schema_type
class AgentTurnResponseStepCompletePayload(BaseModel):
event_type: Literal[AgentTurnResponseEventType.step_complete.value] = (
AgentTurnResponseEventType.step_complete.value
)
step_type: StepType
step_details: Step
@json_schema_type
class AgentTurnResponseStepProgressPayload(BaseModel):
model_config = ConfigDict(protected_namespaces=())
event_type: Literal[AgentTurnResponseEventType.step_progress.value] = (
AgentTurnResponseEventType.step_progress.value
)
step_type: StepType
step_id: str
model_response_text_delta: Optional[str] = None
tool_call_delta: Optional[ToolCallDelta] = None
tool_response_text_delta: Optional[str] = None
@json_schema_type
class AgentTurnResponseTurnStartPayload(BaseModel):
event_type: Literal[AgentTurnResponseEventType.turn_start.value] = (
AgentTurnResponseEventType.turn_start.value
)
turn_id: str
@json_schema_type
class AgentTurnResponseTurnCompletePayload(BaseModel):
event_type: Literal[AgentTurnResponseEventType.turn_complete.value] = (
AgentTurnResponseEventType.turn_complete.value
)
turn: Turn
@json_schema_type
class AgentTurnResponseEvent(BaseModel):
"""Streamed agent execution response."""
payload: Annotated[
Union[
AgentTurnResponseStepStartPayload,
AgentTurnResponseStepProgressPayload,
AgentTurnResponseStepCompletePayload,
AgentTurnResponseTurnStartPayload,
AgentTurnResponseTurnCompletePayload,
],
Field(discriminator="event_type"),
]
@json_schema_type
class AgentCreateResponse(BaseModel):
agent_id: str
@json_schema_type
class AgentSessionCreateResponse(BaseModel):
session_id: str
@json_schema_type
class AgentTurnCreateRequest(AgentConfigOverridablePerTurn):
agent_id: str
session_id: str
# TODO: figure out how we can simplify this and make why
# ToolResponseMessage needs to be here (it is function call
# execution from outside the system)
messages: List[
Union[
UserMessage,
ToolResponseMessage,
]
]
attachments: Optional[List[Attachment]] = None
stream: Optional[bool] = False
@json_schema_type
class AgentTurnResponseStreamChunk(BaseModel):
"""streamed agent turn completion response."""
event: AgentTurnResponseEvent
@json_schema_type
class AgentStepResponse(BaseModel):
step: Step
@runtime_checkable
class Agents(Protocol):
@webmethod(route="/agents/create")
async def create_agent(
self,
agent_config: AgentConfig,
) -> AgentCreateResponse: ...
@webmethod(route="/agents/turn/create")
async def create_agent_turn(
self,
agent_id: str,
session_id: str,
messages: List[
Union[
UserMessage,
ToolResponseMessage,
]
],
attachments: Optional[List[Attachment]] = None,
stream: Optional[bool] = False,
) -> Union[Turn, AsyncIterator[AgentTurnResponseStreamChunk]]: ...
@webmethod(route="/agents/turn/get")
async def get_agents_turn(
self, agent_id: str, session_id: str, turn_id: str
) -> Turn: ...
@webmethod(route="/agents/step/get")
async def get_agents_step(
self, agent_id: str, session_id: str, turn_id: str, step_id: str
) -> AgentStepResponse: ...
@webmethod(route="/agents/session/create")
async def create_agent_session(
self,
agent_id: str,
session_name: str,
) -> AgentSessionCreateResponse: ...
@webmethod(route="/agents/session/get")
async def get_agents_session(
self,
agent_id: str,
session_id: str,
turn_ids: Optional[List[str]] = None,
) -> Session: ...
@webmethod(route="/agents/session/delete")
async def delete_agents_session(self, agent_id: str, session_id: str) -> None: ...
@webmethod(route="/agents/delete")
async def delete_agents(
self,
agent_id: str,
) -> None: ...