llama-stack/llama_stack/providers/inline/inference/meta_reference/inference.py
ehhuang 047303e339
feat: introduce APIs for retrieving chat completion requests (#2145)
# What does this PR do?
This PR introduces APIs to retrieve past chat completion requests, which
will be used in the LS UI.

Our current `Telemetry` is ill-suited for this purpose as it's untyped
so we'd need to filter by obscure attribute names, making it brittle.

Since these APIs are 'provided by stack' and don't need to be
implemented by inference providers, we introduce a new InferenceProvider
class, containing the existing inference protocol, which is implemented
by inference providers.

The APIs are OpenAI-compliant, with an additional `input_messages`
field.


## Test Plan
This PR just adds the API and marks them provided_by_stack. S
tart stack server -> doesn't crash
2025-05-18 21:43:19 -07:00

630 lines
24 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import asyncio
import os
from collections.abc import AsyncGenerator
from pydantic import BaseModel
from termcolor import cprint
from llama_stack.apis.common.content_types import (
TextDelta,
ToolCallDelta,
ToolCallParseStatus,
)
from llama_stack.apis.inference import (
BatchChatCompletionResponse,
BatchCompletionResponse,
ChatCompletionRequest,
ChatCompletionResponse,
ChatCompletionResponseEvent,
ChatCompletionResponseEventType,
ChatCompletionResponseStreamChunk,
CompletionMessage,
CompletionRequest,
CompletionResponse,
CompletionResponseStreamChunk,
InferenceProvider,
InterleavedContent,
LogProbConfig,
Message,
ResponseFormat,
SamplingParams,
StopReason,
TokenLogProbs,
ToolChoice,
ToolConfig,
ToolDefinition,
ToolPromptFormat,
UserMessage,
)
from llama_stack.apis.models import Model, ModelType
from llama_stack.log import get_logger
from llama_stack.models.llama.llama3.chat_format import ChatFormat as Llama3ChatFormat
from llama_stack.models.llama.llama3.tokenizer import Tokenizer as Llama3Tokenizer
from llama_stack.models.llama.llama4.chat_format import ChatFormat as Llama4ChatFormat
from llama_stack.models.llama.llama4.tokenizer import Tokenizer as Llama4Tokenizer
from llama_stack.models.llama.sku_list import resolve_model
from llama_stack.models.llama.sku_types import ModelFamily
from llama_stack.providers.datatypes import ModelsProtocolPrivate
from llama_stack.providers.utils.inference.embedding_mixin import (
SentenceTransformerEmbeddingMixin,
)
from llama_stack.providers.utils.inference.model_registry import (
ModelRegistryHelper,
build_hf_repo_model_entry,
)
from llama_stack.providers.utils.inference.openai_compat import (
OpenAIChatCompletionToLlamaStackMixin,
OpenAICompletionToLlamaStackMixin,
)
from llama_stack.providers.utils.inference.prompt_adapter import (
augment_content_with_response_format_prompt,
chat_completion_request_to_messages,
convert_request_to_raw,
)
from .config import MetaReferenceInferenceConfig
from .generators import LlamaGenerator
from .model_parallel import LlamaModelParallelGenerator
log = get_logger(__name__, category="inference")
# there's a single model parallel process running serving the model. for now,
# we don't support multiple concurrent requests to this process.
SEMAPHORE = asyncio.Semaphore(1)
def llama_builder_fn(config: MetaReferenceInferenceConfig, model_id: str, llama_model: Model) -> LlamaGenerator:
return LlamaGenerator(config, model_id, llama_model)
class MetaReferenceInferenceImpl(
OpenAICompletionToLlamaStackMixin,
OpenAIChatCompletionToLlamaStackMixin,
SentenceTransformerEmbeddingMixin,
InferenceProvider,
ModelsProtocolPrivate,
):
def __init__(self, config: MetaReferenceInferenceConfig) -> None:
self.config = config
self.model_id = None
self.llama_model = None
async def initialize(self) -> None:
pass
async def shutdown(self) -> None:
if self.config.create_distributed_process_group:
self.generator.stop()
async def unregister_model(self, model_id: str) -> None:
pass
async def register_model(self, model: Model) -> Model:
llama_model = (
resolve_model(model.metadata["llama_model"])
if "llama_model" in model.metadata
else resolve_model(model.identifier)
)
if llama_model is None:
raise ValueError(
"Please make sure your llama_model in model metadata or model identifier is in Llama SKU list"
)
self.model_registry_helper = ModelRegistryHelper(
[
build_hf_repo_model_entry(
llama_model.descriptor(),
llama_model.core_model_id.value,
)
],
)
model = await self.model_registry_helper.register_model(model)
if model.model_type == ModelType.embedding:
self._load_sentence_transformer_model(model.provider_resource_id)
# TODO: what is this?! you can't really specify skipping via model metadata
# kill this madness
if "skip_load" in model.metadata and model.metadata["skip_load"]:
return model
await self.load_model(model.identifier, llama_model)
return model
async def load_model(self, model_id, llama_model) -> None:
log.info(f"Loading model `{model_id}`")
builder_params = [self.config, model_id, llama_model]
if self.config.create_distributed_process_group:
self.generator = LlamaModelParallelGenerator(
model_parallel_size=self.config.model_parallel_size or llama_model.pth_file_count,
builder_fn=llama_builder_fn,
builder_params=builder_params,
formatter=(
Llama4ChatFormat(Llama4Tokenizer.get_instance())
if llama_model.model_family == ModelFamily.llama4
else Llama3ChatFormat(Llama3Tokenizer.get_instance())
),
)
self.generator.start()
else:
self.generator = llama_builder_fn(*builder_params)
self.model_id = model_id
self.llama_model = llama_model
log.info("Warming up...")
await self.completion(
model_id=model_id,
content="Hello, world!",
sampling_params=SamplingParams(max_tokens=10),
)
await self.chat_completion(
model_id=model_id,
messages=[UserMessage(content="Hi how are you?")],
sampling_params=SamplingParams(max_tokens=20),
)
log.info("Warmed up!")
def check_model(self, request) -> None:
if self.model_id is None or self.llama_model is None:
raise RuntimeError(
"No avaible model yet, please register your requested model or add your model in the resouces first"
)
elif request.model != self.model_id:
raise RuntimeError(f"Model mismatch: request model: {request.model} != loaded model: {self.model_id}")
async def completion(
self,
model_id: str,
content: InterleavedContent,
sampling_params: SamplingParams | None = None,
response_format: ResponseFormat | None = None,
stream: bool | None = False,
logprobs: LogProbConfig | None = None,
) -> CompletionResponse | CompletionResponseStreamChunk:
if sampling_params is None:
sampling_params = SamplingParams()
if logprobs:
assert logprobs.top_k == 1, f"Unexpected top_k={logprobs.top_k}"
content = augment_content_with_response_format_prompt(response_format, content)
request = CompletionRequest(
model=model_id,
content=content,
sampling_params=sampling_params,
response_format=response_format,
stream=stream,
logprobs=logprobs,
)
self.check_model(request)
request = await convert_request_to_raw(request)
if request.stream:
return self._stream_completion(request)
else:
results = await self._nonstream_completion([request])
return results[0]
async def batch_completion(
self,
model_id: str,
content_batch: list[InterleavedContent],
sampling_params: SamplingParams | None = None,
response_format: ResponseFormat | None = None,
stream: bool | None = False,
logprobs: LogProbConfig | None = None,
) -> BatchCompletionResponse:
if sampling_params is None:
sampling_params = SamplingParams()
if logprobs:
assert logprobs.top_k == 1, f"Unexpected top_k={logprobs.top_k}"
content_batch = [
augment_content_with_response_format_prompt(response_format, content) for content in content_batch
]
request_batch = []
for content in content_batch:
request = CompletionRequest(
model=model_id,
content=content,
sampling_params=sampling_params,
response_format=response_format,
stream=stream,
logprobs=logprobs,
)
self.check_model(request)
request = await convert_request_to_raw(request)
request_batch.append(request)
results = await self._nonstream_completion(request_batch)
return BatchCompletionResponse(batch=results)
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
tokenizer = self.generator.formatter.tokenizer
def impl():
stop_reason = None
for token_results in self.generator.completion([request]):
token_result = token_results[0]
if token_result.token == tokenizer.eot_id:
stop_reason = StopReason.end_of_turn
text = ""
elif token_result.token == tokenizer.eom_id:
stop_reason = StopReason.end_of_message
text = ""
else:
text = token_result.text
logprobs = None
if stop_reason is None:
if request.logprobs:
assert len(token_result.logprobs) == 1
logprobs = [TokenLogProbs(logprobs_by_token={token_result.text: token_result.logprobs[0]})]
yield CompletionResponseStreamChunk(
delta=text,
stop_reason=stop_reason,
logprobs=logprobs if request.logprobs else None,
)
if stop_reason is None:
yield CompletionResponseStreamChunk(
delta="",
stop_reason=StopReason.out_of_tokens,
)
if self.config.create_distributed_process_group:
async with SEMAPHORE:
for x in impl():
yield x
else:
for x in impl():
yield x
async def _nonstream_completion(self, request_batch: list[CompletionRequest]) -> list[CompletionResponse]:
tokenizer = self.generator.formatter.tokenizer
first_request = request_batch[0]
class ItemState(BaseModel):
tokens: list[int] = []
logprobs: list[TokenLogProbs] = []
stop_reason: StopReason | None = None
finished: bool = False
def impl():
states = [ItemState() for _ in request_batch]
results = []
for token_results in self.generator.completion(request_batch):
for result in token_results:
idx = result.batch_idx
state = states[idx]
if state.finished or result.ignore_token:
continue
state.finished = result.finished
if first_request.logprobs:
state.logprobs.append(TokenLogProbs(logprobs_by_token={result.text: result.logprobs[0]}))
state.tokens.append(result.token)
if result.token == tokenizer.eot_id:
state.stop_reason = StopReason.end_of_turn
elif result.token == tokenizer.eom_id:
state.stop_reason = StopReason.end_of_message
for state in states:
if state.stop_reason is None:
state.stop_reason = StopReason.out_of_tokens
if state.tokens[-1] in self.generator.formatter.tokenizer.stop_tokens:
state.tokens = state.tokens[:-1]
content = self.generator.formatter.tokenizer.decode(state.tokens)
results.append(
CompletionResponse(
content=content,
stop_reason=state.stop_reason,
logprobs=state.logprobs if first_request.logprobs else None,
)
)
return results
if self.config.create_distributed_process_group:
async with SEMAPHORE:
return impl()
else:
return impl()
async def chat_completion(
self,
model_id: str,
messages: list[Message],
sampling_params: SamplingParams | None = None,
response_format: ResponseFormat | None = None,
tools: list[ToolDefinition] | None = None,
tool_choice: ToolChoice | None = ToolChoice.auto,
tool_prompt_format: ToolPromptFormat | None = None,
stream: bool | None = False,
logprobs: LogProbConfig | None = None,
tool_config: ToolConfig | None = None,
) -> AsyncGenerator:
if sampling_params is None:
sampling_params = SamplingParams()
if logprobs:
assert logprobs.top_k == 1, f"Unexpected top_k={logprobs.top_k}"
# wrapper request to make it easier to pass around (internal only, not exposed to API)
request = ChatCompletionRequest(
model=model_id,
messages=messages,
sampling_params=sampling_params,
tools=tools or [],
response_format=response_format,
stream=stream,
logprobs=logprobs,
tool_config=tool_config or ToolConfig(),
)
self.check_model(request)
# augment and rewrite messages depending on the model
request.messages = chat_completion_request_to_messages(request, self.llama_model.core_model_id.value)
# download media and convert to raw content so we can send it to the model
request = await convert_request_to_raw(request)
if self.config.create_distributed_process_group:
if SEMAPHORE.locked():
raise RuntimeError("Only one concurrent request is supported")
if request.stream:
return self._stream_chat_completion(request)
else:
results = await self._nonstream_chat_completion([request])
return results[0]
async def batch_chat_completion(
self,
model_id: str,
messages_batch: list[list[Message]],
sampling_params: SamplingParams | None = None,
response_format: ResponseFormat | None = None,
tools: list[ToolDefinition] | None = None,
stream: bool | None = False,
logprobs: LogProbConfig | None = None,
tool_config: ToolConfig | None = None,
) -> BatchChatCompletionResponse:
if sampling_params is None:
sampling_params = SamplingParams()
if logprobs:
assert logprobs.top_k == 1, f"Unexpected top_k={logprobs.top_k}"
# wrapper request to make it easier to pass around (internal only, not exposed to API)
request_batch = []
for messages in messages_batch:
request = ChatCompletionRequest(
model=model_id,
messages=messages,
sampling_params=sampling_params,
tools=tools or [],
response_format=response_format,
logprobs=logprobs,
tool_config=tool_config or ToolConfig(),
)
self.check_model(request)
# augment and rewrite messages depending on the model
request.messages = chat_completion_request_to_messages(request, self.llama_model.core_model_id.value)
# download media and convert to raw content so we can send it to the model
request = await convert_request_to_raw(request)
request_batch.append(request)
if self.config.create_distributed_process_group:
if SEMAPHORE.locked():
raise RuntimeError("Only one concurrent request is supported")
results = await self._nonstream_chat_completion(request_batch)
return BatchChatCompletionResponse(batch=results)
async def _nonstream_chat_completion(
self, request_batch: list[ChatCompletionRequest]
) -> list[ChatCompletionResponse]:
tokenizer = self.generator.formatter.tokenizer
first_request = request_batch[0]
class ItemState(BaseModel):
tokens: list[int] = []
logprobs: list[TokenLogProbs] = []
stop_reason: StopReason | None = None
finished: bool = False
def impl():
states = [ItemState() for _ in request_batch]
for token_results in self.generator.chat_completion(request_batch):
first = token_results[0]
if not first.finished and not first.ignore_token:
if os.environ.get("LLAMA_MODELS_DEBUG", "0") in ("1", "2"):
cprint(first.text, "cyan", end="")
if os.environ.get("LLAMA_MODELS_DEBUG", "0") == "2":
cprint(f"<{first.token}>", "magenta", end="")
for result in token_results:
idx = result.batch_idx
state = states[idx]
if state.finished or result.ignore_token:
continue
state.finished = result.finished
if first_request.logprobs:
state.logprobs.append(TokenLogProbs(logprobs_by_token={result.text: result.logprobs[0]}))
state.tokens.append(result.token)
if result.token == tokenizer.eot_id:
state.stop_reason = StopReason.end_of_turn
elif result.token == tokenizer.eom_id:
state.stop_reason = StopReason.end_of_message
results = []
for state in states:
if state.stop_reason is None:
state.stop_reason = StopReason.out_of_tokens
raw_message = self.generator.formatter.decode_assistant_message(state.tokens, state.stop_reason)
results.append(
ChatCompletionResponse(
completion_message=CompletionMessage(
content=raw_message.content,
stop_reason=raw_message.stop_reason,
tool_calls=raw_message.tool_calls,
),
logprobs=state.logprobs if first_request.logprobs else None,
)
)
return results
if self.config.create_distributed_process_group:
async with SEMAPHORE:
return impl()
else:
return impl()
async def _stream_chat_completion(self, request: ChatCompletionRequest) -> AsyncGenerator:
tokenizer = self.generator.formatter.tokenizer
def impl():
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.start,
delta=TextDelta(text=""),
)
)
tokens = []
logprobs = []
stop_reason = None
ipython = False
for token_results in self.generator.chat_completion([request]):
token_result = token_results[0]
if os.environ.get("LLAMA_MODELS_DEBUG", "0") == "1":
cprint(token_result.text, "cyan", end="")
if os.environ.get("LLAMA_MODELS_DEBUG", "0") == "2":
cprint(f"<{token_result.token}>", "magenta", end="")
if token_result.token == tokenizer.eot_id:
stop_reason = StopReason.end_of_turn
text = ""
elif token_result.token == tokenizer.eom_id:
stop_reason = StopReason.end_of_message
text = ""
else:
text = token_result.text
if request.logprobs:
assert len(token_result.logprobs) == 1
logprobs.append(TokenLogProbs(logprobs_by_token={token_result.text: token_result.logprobs[0]}))
tokens.append(token_result.token)
if not ipython and token_result.text.startswith("<|python_tag|>"):
ipython = True
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
tool_call="",
parse_status=ToolCallParseStatus.started,
),
)
)
continue
if token_result.token == tokenizer.eot_id:
stop_reason = StopReason.end_of_turn
text = ""
elif token_result.token == tokenizer.eom_id:
stop_reason = StopReason.end_of_message
text = ""
else:
text = token_result.text
if ipython:
delta = ToolCallDelta(
tool_call=text,
parse_status=ToolCallParseStatus.in_progress,
)
else:
delta = TextDelta(text=text)
if stop_reason is None:
if request.logprobs:
assert len(token_result.logprobs) == 1
logprobs.append(TokenLogProbs(logprobs_by_token={token_result.text: token_result.logprobs[0]}))
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=delta,
stop_reason=stop_reason,
logprobs=logprobs if request.logprobs else None,
)
)
if stop_reason is None:
stop_reason = StopReason.out_of_tokens
message = self.generator.formatter.decode_assistant_message(tokens, stop_reason)
parsed_tool_calls = len(message.tool_calls) > 0
if ipython and not parsed_tool_calls:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
tool_call="",
parse_status=ToolCallParseStatus.failed,
),
stop_reason=stop_reason,
)
)
for tool_call in message.tool_calls:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
tool_call=tool_call,
parse_status=ToolCallParseStatus.succeeded,
),
stop_reason=stop_reason,
)
)
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.complete,
delta=TextDelta(text=""),
stop_reason=stop_reason,
)
)
if self.config.create_distributed_process_group:
async with SEMAPHORE:
for x in impl():
yield x
else:
for x in impl():
yield x