llama-stack/llama_stack/templates/dev/dev.py
Ashwin Bharambe 04de2f84e9
fix: register provider model name and HF alias in run.yaml (#1304)
Each model known to the system has two identifiers: 

- the `provider_resource_id` (what the provider calls it) -- e.g.,
`accounts/fireworks/models/llama-v3p1-8b-instruct`
- the `identifier` (`model_id`) under which it is registered and gets
routed to the appropriate provider.

We have so far used the HuggingFace repo alias as the standardized
identifier you can use to refer to the model. So in the above example,
we'd use `meta-llama/Llama-3.1-8B-Instruct` as the name under which it
gets registered. This makes it convenient for users to refer to these
models across providers.

However, we forgot to register the _actual_ provider model ID also. You
should be able to route via `provider_resource_id` also, of course.

This change fixes this (somewhat grave) omission.

*Note*: this change is additive -- more aliases work now compared to
before.

## Test Plan

Run the following for distro=(ollama fireworks together)
```
LLAMA_STACK_CONFIG=$distro \
   pytest -s -v tests/client-sdk/inference/test_text_inference.py \
   --inference-model=meta-llama/Llama-3.1-8B-Instruct --vision-inference-model=""
```
2025-02-27 16:39:23 -08:00

165 lines
6.1 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import List, Tuple
from llama_stack.apis.models.models import ModelType
from llama_stack.distribution.datatypes import (
ModelInput,
Provider,
ShieldInput,
ToolGroupInput,
)
from llama_stack.providers.inline.inference.sentence_transformers import (
SentenceTransformersInferenceConfig,
)
from llama_stack.providers.inline.vector_io.sqlite_vec.config import SQLiteVectorIOConfig
from llama_stack.providers.remote.inference.anthropic.config import AnthropicConfig
from llama_stack.providers.remote.inference.anthropic.models import MODEL_ENTRIES as ANTHROPIC_MODEL_ENTRIES
from llama_stack.providers.remote.inference.fireworks.config import FireworksImplConfig
from llama_stack.providers.remote.inference.fireworks.models import MODEL_ENTRIES as FIREWORKS_MODEL_ENTRIES
from llama_stack.providers.remote.inference.gemini.config import GeminiConfig
from llama_stack.providers.remote.inference.gemini.models import MODEL_ENTRIES as GEMINI_MODEL_ENTRIES
from llama_stack.providers.remote.inference.groq.config import GroqConfig
from llama_stack.providers.remote.inference.groq.models import MODEL_ENTRIES as GROQ_MODEL_ENTRIES
from llama_stack.providers.remote.inference.openai.config import OpenAIConfig
from llama_stack.providers.remote.inference.openai.models import MODEL_ENTRIES as OPENAI_MODEL_ENTRIES
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings, get_model_registry
def get_inference_providers() -> Tuple[List[Provider], List[ModelInput]]:
# in this template, we allow each API key to be optional
providers = [
(
"openai",
OPENAI_MODEL_ENTRIES,
OpenAIConfig.sample_run_config(api_key="${env.OPENAI_API_KEY:}"),
),
(
"fireworks",
FIREWORKS_MODEL_ENTRIES,
FireworksImplConfig.sample_run_config(api_key="${env.FIREWORKS_API_KEY:}"),
),
(
"anthropic",
ANTHROPIC_MODEL_ENTRIES,
AnthropicConfig.sample_run_config(api_key="${env.ANTHROPIC_API_KEY:}"),
),
(
"gemini",
GEMINI_MODEL_ENTRIES,
GeminiConfig.sample_run_config(api_key="${env.GEMINI_API_KEY:}"),
),
(
"groq",
GROQ_MODEL_ENTRIES,
GroqConfig.sample_run_config(api_key="${env.GROQ_API_KEY:}"),
),
]
inference_providers = []
available_models = {}
for provider_id, model_entries, config in providers:
inference_providers.append(
Provider(
provider_id=provider_id,
provider_type=f"remote::{provider_id}",
config=config,
)
)
available_models[provider_id] = model_entries
return inference_providers, available_models
def get_distribution_template() -> DistributionTemplate:
inference_providers, available_models = get_inference_providers()
providers = {
"inference": ([p.provider_type for p in inference_providers] + ["inline::sentence-transformers"]),
"vector_io": ["inline::sqlite-vec", "remote::chromadb", "remote::pgvector"],
"safety": ["inline::llama-guard"],
"agents": ["inline::meta-reference"],
"telemetry": ["inline::meta-reference"],
"eval": ["inline::meta-reference"],
"datasetio": ["remote::huggingface", "inline::localfs"],
"scoring": ["inline::basic", "inline::llm-as-judge", "inline::braintrust"],
"tool_runtime": [
"remote::brave-search",
"remote::tavily-search",
"inline::code-interpreter",
"inline::rag-runtime",
"remote::model-context-protocol",
],
}
name = "dev"
vector_io_provider = Provider(
provider_id="sqlite-vec",
provider_type="inline::sqlite-vec",
config=SQLiteVectorIOConfig.sample_run_config(f"distributions/{name}"),
)
embedding_provider = Provider(
provider_id="sentence-transformers",
provider_type="inline::sentence-transformers",
config=SentenceTransformersInferenceConfig.sample_run_config(),
)
default_tool_groups = [
ToolGroupInput(
toolgroup_id="builtin::websearch",
provider_id="tavily-search",
),
ToolGroupInput(
toolgroup_id="builtin::rag",
provider_id="rag-runtime",
),
ToolGroupInput(
toolgroup_id="builtin::code_interpreter",
provider_id="code-interpreter",
),
]
embedding_model = ModelInput(
model_id="all-MiniLM-L6-v2",
provider_id=embedding_provider.provider_id,
model_type=ModelType.embedding,
metadata={
"embedding_dimension": 384,
},
)
default_models = get_model_registry(available_models)
return DistributionTemplate(
name=name,
distro_type="self_hosted",
description="Distribution for running e2e tests in CI",
container_image=None,
template_path=None,
providers=providers,
available_models_by_provider=available_models,
run_configs={
"run.yaml": RunConfigSettings(
provider_overrides={
"inference": inference_providers + [embedding_provider],
"vector_io": [vector_io_provider],
},
default_models=default_models + [embedding_model],
default_tool_groups=default_tool_groups,
default_shields=[ShieldInput(shield_id="meta-llama/Llama-Guard-3-8B")],
),
},
run_config_env_vars={
"LLAMA_STACK_PORT": (
"5001",
"Port for the Llama Stack distribution server",
),
"FIREWORKS_API_KEY": (
"",
"Fireworks API Key",
),
"OPENAI_API_KEY": (
"",
"OpenAI API Key",
),
},
)