forked from phoenix-oss/llama-stack-mirror
The semantics of an Update on resources is very tricky to reason about especially for memory banks and models. The best way to go forward here is for the user to unregister and register a new resource. We don't have a compelling reason to support update APIs. Tests: pytest -v -s llama_stack/providers/tests/memory/test_memory.py -m "chroma" --env CHROMA_HOST=localhost --env CHROMA_PORT=8000 pytest -v -s llama_stack/providers/tests/memory/test_memory.py -m "pgvector" --env PGVECTOR_DB=postgres --env PGVECTOR_USER=postgres --env PGVECTOR_PASSWORD=mysecretpassword --env PGVECTOR_HOST=0.0.0.0 $CONDA_PREFIX/bin/pytest -v -s -m "ollama" llama_stack/providers/tests/inference/test_model_registration.py --------- Co-authored-by: Dinesh Yeduguru <dineshyv@fb.com>
428 lines
15 KiB
Python
428 lines
15 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import asyncio
|
|
|
|
from typing import AsyncGenerator, List
|
|
|
|
from llama_models.sku_list import resolve_model
|
|
|
|
from llama_models.llama3.api.datatypes import * # noqa: F403
|
|
|
|
from llama_stack.providers.utils.inference.model_registry import build_model_alias
|
|
from llama_stack.apis.inference import * # noqa: F403
|
|
from llama_stack.providers.datatypes import ModelsProtocolPrivate
|
|
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
|
|
from llama_stack.providers.utils.inference.prompt_adapter import (
|
|
convert_image_media_to_url,
|
|
request_has_media,
|
|
)
|
|
|
|
from .config import MetaReferenceInferenceConfig
|
|
from .generation import Llama
|
|
from .model_parallel import LlamaModelParallelGenerator
|
|
|
|
# there's a single model parallel process running serving the model. for now,
|
|
# we don't support multiple concurrent requests to this process.
|
|
SEMAPHORE = asyncio.Semaphore(1)
|
|
|
|
|
|
class MetaReferenceInferenceImpl(Inference, ModelRegistryHelper, ModelsProtocolPrivate):
|
|
def __init__(self, config: MetaReferenceInferenceConfig) -> None:
|
|
self.config = config
|
|
model = resolve_model(config.model)
|
|
ModelRegistryHelper.__init__(
|
|
self,
|
|
[
|
|
build_model_alias(
|
|
model.descriptor(),
|
|
model.core_model_id.value,
|
|
)
|
|
],
|
|
)
|
|
if model is None:
|
|
raise RuntimeError(f"Unknown model: {config.model}, Run `llama model list`")
|
|
self.model = model
|
|
# verify that the checkpoint actually is for this model lol
|
|
|
|
async def initialize(self) -> None:
|
|
print(f"Loading model `{self.model.descriptor()}`")
|
|
if self.config.create_distributed_process_group:
|
|
self.generator = LlamaModelParallelGenerator(self.config)
|
|
self.generator.start()
|
|
else:
|
|
self.generator = Llama.build(self.config)
|
|
|
|
async def shutdown(self) -> None:
|
|
if self.config.create_distributed_process_group:
|
|
self.generator.stop()
|
|
|
|
def check_model(self, request) -> None:
|
|
model = resolve_model(request.model)
|
|
if model is None:
|
|
raise RuntimeError(
|
|
f"Unknown model: {request.model}, Run `llama model list`"
|
|
)
|
|
elif model.descriptor() != self.model.descriptor():
|
|
raise RuntimeError(
|
|
f"Model mismatch: {request.model} != {self.model.descriptor()}"
|
|
)
|
|
|
|
async def unregister_model(self, model_id: str) -> None:
|
|
pass
|
|
|
|
async def completion(
|
|
self,
|
|
model_id: str,
|
|
content: InterleavedTextMedia,
|
|
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
|
response_format: Optional[ResponseFormat] = None,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
) -> Union[CompletionResponse, CompletionResponseStreamChunk]:
|
|
if logprobs:
|
|
assert logprobs.top_k == 1, f"Unexpected top_k={logprobs.top_k}"
|
|
|
|
request = CompletionRequest(
|
|
model=model_id,
|
|
content=content,
|
|
sampling_params=sampling_params,
|
|
response_format=response_format,
|
|
stream=stream,
|
|
logprobs=logprobs,
|
|
)
|
|
self.check_model(request)
|
|
request = await request_with_localized_media(request)
|
|
|
|
if request.stream:
|
|
return self._stream_completion(request)
|
|
else:
|
|
return await self._nonstream_completion(request)
|
|
|
|
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
|
|
def impl():
|
|
stop_reason = None
|
|
|
|
for token_result in self.generator.completion(request):
|
|
if token_result.text == "<|eot_id|>":
|
|
stop_reason = StopReason.end_of_turn
|
|
text = ""
|
|
elif token_result.text == "<|eom_id|>":
|
|
stop_reason = StopReason.end_of_message
|
|
text = ""
|
|
else:
|
|
text = token_result.text
|
|
|
|
logprobs = None
|
|
if stop_reason is None:
|
|
if request.logprobs:
|
|
assert len(token_result.logprobs) == 1
|
|
|
|
logprobs = [
|
|
TokenLogProbs(
|
|
logprobs_by_token={
|
|
token_result.text: token_result.logprobs[0]
|
|
}
|
|
)
|
|
]
|
|
|
|
yield CompletionResponseStreamChunk(
|
|
delta=text,
|
|
stop_reason=stop_reason,
|
|
logprobs=logprobs if request.logprobs else None,
|
|
)
|
|
|
|
if stop_reason is None:
|
|
yield CompletionResponseStreamChunk(
|
|
delta="",
|
|
stop_reason=StopReason.out_of_tokens,
|
|
)
|
|
|
|
if self.config.create_distributed_process_group:
|
|
async with SEMAPHORE:
|
|
for x in impl():
|
|
yield x
|
|
else:
|
|
for x in impl():
|
|
yield x
|
|
|
|
async def _nonstream_completion(
|
|
self, request: CompletionRequest
|
|
) -> CompletionResponse:
|
|
def impl():
|
|
tokens = []
|
|
logprobs = []
|
|
stop_reason = None
|
|
|
|
tokenizer = self.generator.formatter.tokenizer
|
|
for token_result in self.generator.completion(request):
|
|
tokens.append(token_result.token)
|
|
|
|
if token_result.token in tokenizer.stop_tokens:
|
|
# not quite right semantically
|
|
stop_reason = StopReason.end_of_turn
|
|
|
|
if request.logprobs:
|
|
assert len(token_result.logprobs) == 1
|
|
|
|
logprobs.append(
|
|
TokenLogProbs(
|
|
logprobs_by_token={
|
|
token_result.text: token_result.logprobs[0]
|
|
}
|
|
)
|
|
)
|
|
|
|
if stop_reason is None:
|
|
stop_reason = StopReason.out_of_tokens
|
|
|
|
content = self.generator.formatter.tokenizer.decode(tokens)
|
|
return CompletionResponse(
|
|
content=content,
|
|
stop_reason=stop_reason,
|
|
logprobs=logprobs if request.logprobs else None,
|
|
)
|
|
|
|
if self.config.create_distributed_process_group:
|
|
async with SEMAPHORE:
|
|
return impl()
|
|
else:
|
|
return impl()
|
|
|
|
async def chat_completion(
|
|
self,
|
|
model_id: str,
|
|
messages: List[Message],
|
|
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
|
response_format: Optional[ResponseFormat] = None,
|
|
tools: Optional[List[ToolDefinition]] = None,
|
|
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
|
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
) -> AsyncGenerator:
|
|
if logprobs:
|
|
assert logprobs.top_k == 1, f"Unexpected top_k={logprobs.top_k}"
|
|
|
|
# wrapper request to make it easier to pass around (internal only, not exposed to API)
|
|
request = ChatCompletionRequest(
|
|
model=model_id,
|
|
messages=messages,
|
|
sampling_params=sampling_params,
|
|
tools=tools or [],
|
|
tool_choice=tool_choice,
|
|
tool_prompt_format=tool_prompt_format,
|
|
response_format=response_format,
|
|
stream=stream,
|
|
logprobs=logprobs,
|
|
)
|
|
self.check_model(request)
|
|
request = await request_with_localized_media(request)
|
|
|
|
if self.config.create_distributed_process_group:
|
|
if SEMAPHORE.locked():
|
|
raise RuntimeError("Only one concurrent request is supported")
|
|
|
|
if request.stream:
|
|
return self._stream_chat_completion(request)
|
|
else:
|
|
return await self._nonstream_chat_completion(request)
|
|
|
|
async def _nonstream_chat_completion(
|
|
self, request: ChatCompletionRequest
|
|
) -> ChatCompletionResponse:
|
|
def impl():
|
|
tokens = []
|
|
logprobs = []
|
|
stop_reason = None
|
|
|
|
for token_result in self.generator.chat_completion(request):
|
|
tokens.append(token_result.token)
|
|
|
|
if token_result.text == "<|eot_id|>":
|
|
stop_reason = StopReason.end_of_turn
|
|
elif token_result.text == "<|eom_id|>":
|
|
stop_reason = StopReason.end_of_message
|
|
|
|
if request.logprobs:
|
|
assert len(token_result.logprobs) == 1
|
|
|
|
logprobs.append(
|
|
TokenLogProbs(
|
|
logprobs_by_token={
|
|
token_result.text: token_result.logprobs[0]
|
|
}
|
|
)
|
|
)
|
|
|
|
if stop_reason is None:
|
|
stop_reason = StopReason.out_of_tokens
|
|
|
|
message = self.generator.formatter.decode_assistant_message(
|
|
tokens, stop_reason
|
|
)
|
|
return ChatCompletionResponse(
|
|
completion_message=message,
|
|
logprobs=logprobs if request.logprobs else None,
|
|
)
|
|
|
|
if self.config.create_distributed_process_group:
|
|
async with SEMAPHORE:
|
|
return impl()
|
|
else:
|
|
return impl()
|
|
|
|
async def _stream_chat_completion(
|
|
self, request: ChatCompletionRequest
|
|
) -> AsyncGenerator:
|
|
def impl():
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.start,
|
|
delta="",
|
|
)
|
|
)
|
|
|
|
tokens = []
|
|
logprobs = []
|
|
stop_reason = None
|
|
ipython = False
|
|
|
|
for token_result in self.generator.chat_completion(request):
|
|
tokens.append(token_result.token)
|
|
|
|
if not ipython and token_result.text.startswith("<|python_tag|>"):
|
|
ipython = True
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.progress,
|
|
delta=ToolCallDelta(
|
|
content="",
|
|
parse_status=ToolCallParseStatus.started,
|
|
),
|
|
)
|
|
)
|
|
continue
|
|
|
|
if token_result.text == "<|eot_id|>":
|
|
stop_reason = StopReason.end_of_turn
|
|
text = ""
|
|
elif token_result.text == "<|eom_id|>":
|
|
stop_reason = StopReason.end_of_message
|
|
text = ""
|
|
else:
|
|
text = token_result.text
|
|
|
|
if ipython:
|
|
delta = ToolCallDelta(
|
|
content=text,
|
|
parse_status=ToolCallParseStatus.in_progress,
|
|
)
|
|
else:
|
|
delta = text
|
|
|
|
if stop_reason is None:
|
|
if request.logprobs:
|
|
assert len(token_result.logprobs) == 1
|
|
|
|
logprobs.append(
|
|
TokenLogProbs(
|
|
logprobs_by_token={
|
|
token_result.text: token_result.logprobs[0]
|
|
}
|
|
)
|
|
)
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.progress,
|
|
delta=delta,
|
|
stop_reason=stop_reason,
|
|
logprobs=logprobs if request.logprobs else None,
|
|
)
|
|
)
|
|
|
|
if stop_reason is None:
|
|
stop_reason = StopReason.out_of_tokens
|
|
|
|
message = self.generator.formatter.decode_assistant_message(
|
|
tokens, stop_reason
|
|
)
|
|
|
|
parsed_tool_calls = len(message.tool_calls) > 0
|
|
if ipython and not parsed_tool_calls:
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.progress,
|
|
delta=ToolCallDelta(
|
|
content="",
|
|
parse_status=ToolCallParseStatus.failure,
|
|
),
|
|
stop_reason=stop_reason,
|
|
)
|
|
)
|
|
|
|
for tool_call in message.tool_calls:
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.progress,
|
|
delta=ToolCallDelta(
|
|
content=tool_call,
|
|
parse_status=ToolCallParseStatus.success,
|
|
),
|
|
stop_reason=stop_reason,
|
|
)
|
|
)
|
|
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.complete,
|
|
delta="",
|
|
stop_reason=stop_reason,
|
|
)
|
|
)
|
|
|
|
if self.config.create_distributed_process_group:
|
|
async with SEMAPHORE:
|
|
for x in impl():
|
|
yield x
|
|
else:
|
|
for x in impl():
|
|
yield x
|
|
|
|
async def embeddings(
|
|
self,
|
|
model_id: str,
|
|
contents: List[InterleavedTextMedia],
|
|
) -> EmbeddingsResponse:
|
|
raise NotImplementedError()
|
|
|
|
|
|
async def request_with_localized_media(
|
|
request: Union[ChatCompletionRequest, CompletionRequest],
|
|
) -> Union[ChatCompletionRequest, CompletionRequest]:
|
|
if not request_has_media(request):
|
|
return request
|
|
|
|
async def _convert_single_content(content):
|
|
if isinstance(content, ImageMedia):
|
|
url = await convert_image_media_to_url(content, download=True)
|
|
return ImageMedia(image=URL(uri=url))
|
|
else:
|
|
return content
|
|
|
|
async def _convert_content(content):
|
|
if isinstance(content, list):
|
|
return [await _convert_single_content(c) for c in content]
|
|
else:
|
|
return await _convert_single_content(content)
|
|
|
|
if isinstance(request, ChatCompletionRequest):
|
|
for m in request.messages:
|
|
m.content = await _convert_content(m.content)
|
|
else:
|
|
request.content = await _convert_content(request.content)
|
|
|
|
return request
|