forked from phoenix-oss/llama-stack-mirror
# What does this PR do? This is a follow-up to #425. That PR allows for specifying models in the registry, but each entry needs to look like: ```yaml - identifier: ... provider_id: ... provider_resource_identifier: ... ``` This is headache-inducing. The current PR makes this situation better by adopting the shape of our APIs. Namely, we need the user to only specify `model-id`. The rest should be optional and figured out by the Stack. You can always override it. Here's what example `ollama` "full stack" registry looks like (we still need to kill or simplify shield_type crap): ```yaml models: - model_id: Llama3.2-3B-Instruct - model_id: Llama-Guard-3-1B shields: - shield_id: llama_guard shield_type: llama_guard ``` ## Test Plan See test plan for #425. Re-ran it.
100 lines
3.4 KiB
Python
100 lines
3.4 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from typing import Any, Dict
|
|
from termcolor import colored
|
|
|
|
from termcolor import colored
|
|
|
|
from llama_models.llama3.api.datatypes import * # noqa: F403
|
|
from llama_stack.apis.agents import * # noqa: F403
|
|
from llama_stack.apis.datasets import * # noqa: F403
|
|
from llama_stack.apis.datasetio import * # noqa: F403
|
|
from llama_stack.apis.scoring import * # noqa: F403
|
|
from llama_stack.apis.scoring_functions import * # noqa: F403
|
|
from llama_stack.apis.eval import * # noqa: F403
|
|
from llama_stack.apis.inference import * # noqa: F403
|
|
from llama_stack.apis.batch_inference import * # noqa: F403
|
|
from llama_stack.apis.memory import * # noqa: F403
|
|
from llama_stack.apis.telemetry import * # noqa: F403
|
|
from llama_stack.apis.post_training import * # noqa: F403
|
|
from llama_stack.apis.synthetic_data_generation import * # noqa: F403
|
|
from llama_stack.apis.safety import * # noqa: F403
|
|
from llama_stack.apis.models import * # noqa: F403
|
|
from llama_stack.apis.memory_banks import * # noqa: F403
|
|
from llama_stack.apis.shields import * # noqa: F403
|
|
from llama_stack.apis.inspect import * # noqa: F403
|
|
from llama_stack.apis.eval_tasks import * # noqa: F403
|
|
|
|
from llama_stack.distribution.datatypes import StackRunConfig
|
|
from llama_stack.distribution.distribution import get_provider_registry
|
|
from llama_stack.distribution.resolver import resolve_impls
|
|
from llama_stack.distribution.store.registry import create_dist_registry
|
|
from llama_stack.providers.datatypes import Api
|
|
|
|
|
|
class LlamaStack(
|
|
MemoryBanks,
|
|
Inference,
|
|
BatchInference,
|
|
Agents,
|
|
Safety,
|
|
SyntheticDataGeneration,
|
|
Datasets,
|
|
Telemetry,
|
|
PostTraining,
|
|
Memory,
|
|
Eval,
|
|
EvalTasks,
|
|
Scoring,
|
|
ScoringFunctions,
|
|
DatasetIO,
|
|
Models,
|
|
Shields,
|
|
Inspect,
|
|
):
|
|
pass
|
|
|
|
|
|
# Produces a stack of providers for the given run config. Not all APIs may be
|
|
# asked for in the run config.
|
|
async def construct_stack(run_config: StackRunConfig) -> Dict[Api, Any]:
|
|
dist_registry, _ = await create_dist_registry(
|
|
run_config.metadata_store, run_config.image_name
|
|
)
|
|
|
|
impls = await resolve_impls(run_config, get_provider_registry(), dist_registry)
|
|
|
|
resources = [
|
|
("models", Api.models, "register_model", "list_models"),
|
|
("shields", Api.shields, "register_shield", "list_shields"),
|
|
("memory_banks", Api.memory_banks, "register_memory_bank", "list_memory_banks"),
|
|
("datasets", Api.datasets, "register_dataset", "list_datasets"),
|
|
(
|
|
"scoring_fns",
|
|
Api.scoring_functions,
|
|
"register_scoring_function",
|
|
"list_scoring_functions",
|
|
),
|
|
("eval_tasks", Api.eval_tasks, "register_eval_task", "list_eval_tasks"),
|
|
]
|
|
for rsrc, api, register_method, list_method in resources:
|
|
objects = getattr(run_config, rsrc)
|
|
if api not in impls:
|
|
continue
|
|
|
|
method = getattr(impls[api], register_method)
|
|
for obj in objects:
|
|
await method(**obj.model_dump())
|
|
|
|
method = getattr(impls[api], list_method)
|
|
for obj in await method():
|
|
print(
|
|
f"{rsrc.capitalize()}: {colored(obj.identifier, 'white', attrs=['bold'])} served by {colored(obj.provider_id, 'white', attrs=['bold'])}",
|
|
)
|
|
|
|
print("")
|
|
return impls
|