forked from phoenix-oss/llama-stack-mirror
We should use Inference APIs to execute Llama Guard instead of directly needing to use HuggingFace modeling related code. The actual inference consideration is handled by Inference.
172 lines
5.7 KiB
Python
172 lines
5.7 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
from termcolor import cprint
|
|
from llama_models.llama3.api.datatypes import * # noqa: F403
|
|
from llama_stack.apis.inference import * # noqa: F403
|
|
from llama_models.datatypes import ModelFamily
|
|
from llama_models.llama3.prompt_templates import (
|
|
BuiltinToolGenerator,
|
|
FunctionTagCustomToolGenerator,
|
|
JsonCustomToolGenerator,
|
|
PythonListCustomToolGenerator,
|
|
SystemDefaultGenerator,
|
|
)
|
|
from llama_models.sku_list import resolve_model
|
|
|
|
from llama_stack.providers.utils.inference import supported_inference_models
|
|
|
|
|
|
def augment_messages_for_tools(request: ChatCompletionRequest) -> List[Message]:
|
|
"""Reads chat completion request and augments the messages to handle tools.
|
|
For eg. for llama_3_1, add system message with the appropriate tools or
|
|
add user messsage for custom tools, etc.
|
|
"""
|
|
model = resolve_model(request.model)
|
|
if model is None:
|
|
cprint(f"Could not resolve model {request.model}", color="red")
|
|
return request.messages
|
|
|
|
if model.descriptor() not in supported_inference_models():
|
|
cprint(f"Unsupported inference model? {model.descriptor()}", color="red")
|
|
return request.messages
|
|
|
|
if model.model_family == ModelFamily.llama3_1 or (
|
|
model.model_family == ModelFamily.llama3_2 and is_multimodal(model)
|
|
):
|
|
# llama3.1 and llama3.2 multimodal models follow the same tool prompt format
|
|
return augment_messages_for_tools_llama_3_1(request)
|
|
elif model.model_family == ModelFamily.llama3_2:
|
|
return augment_messages_for_tools_llama_3_2(request)
|
|
else:
|
|
return request.messages
|
|
|
|
|
|
def augment_messages_for_tools_llama_3_1(
|
|
request: ChatCompletionRequest,
|
|
) -> List[Message]:
|
|
|
|
assert request.tool_choice == ToolChoice.auto, "Only `ToolChoice.auto` supported"
|
|
|
|
existing_messages = request.messages
|
|
existing_system_message = None
|
|
if existing_messages[0].role == Role.system.value:
|
|
existing_system_message = existing_messages.pop(0)
|
|
|
|
assert (
|
|
existing_messages[0].role != Role.system.value
|
|
), "Should only have 1 system message"
|
|
|
|
messages = []
|
|
|
|
default_gen = SystemDefaultGenerator()
|
|
default_template = default_gen.gen()
|
|
|
|
sys_content = ""
|
|
|
|
tool_template = None
|
|
if request.tools:
|
|
tool_gen = BuiltinToolGenerator()
|
|
tool_template = tool_gen.gen(request.tools)
|
|
|
|
sys_content += tool_template.render()
|
|
sys_content += "\n"
|
|
|
|
sys_content += default_template.render()
|
|
|
|
if existing_system_message:
|
|
# TODO: this fn is needed in many places
|
|
def _process(c):
|
|
if isinstance(c, str):
|
|
return c
|
|
else:
|
|
return "<media>"
|
|
|
|
sys_content += "\n"
|
|
|
|
if isinstance(existing_system_message.content, str):
|
|
sys_content += _process(existing_system_message.content)
|
|
elif isinstance(existing_system_message.content, list):
|
|
sys_content += "\n".join(
|
|
[_process(c) for c in existing_system_message.content]
|
|
)
|
|
|
|
messages.append(SystemMessage(content=sys_content))
|
|
|
|
has_custom_tools = any(isinstance(dfn.tool_name, str) for dfn in request.tools)
|
|
if has_custom_tools:
|
|
if request.tool_prompt_format == ToolPromptFormat.json:
|
|
tool_gen = JsonCustomToolGenerator()
|
|
elif request.tool_prompt_format == ToolPromptFormat.function_tag:
|
|
tool_gen = FunctionTagCustomToolGenerator()
|
|
else:
|
|
raise ValueError(
|
|
f"Non supported ToolPromptFormat {request.tool_prompt_format}"
|
|
)
|
|
|
|
custom_tools = [t for t in request.tools if isinstance(t.tool_name, str)]
|
|
custom_template = tool_gen.gen(custom_tools)
|
|
messages.append(UserMessage(content=custom_template.render()))
|
|
|
|
# Add back existing messages from the request
|
|
messages += existing_messages
|
|
|
|
return messages
|
|
|
|
|
|
def augment_messages_for_tools_llama_3_2(
|
|
request: ChatCompletionRequest,
|
|
) -> List[Message]:
|
|
assert request.tool_choice == ToolChoice.auto, "Only `ToolChoice.auto` supported"
|
|
|
|
existing_messages = request.messages
|
|
existing_system_message = None
|
|
if existing_messages[0].role == Role.system.value:
|
|
existing_system_message = existing_messages.pop(0)
|
|
|
|
assert (
|
|
existing_messages[0].role != Role.system.value
|
|
), "Should only have 1 system message"
|
|
|
|
messages = []
|
|
sys_content = ""
|
|
custom_tools, builtin_tools = [], []
|
|
for t in request.tools:
|
|
if isinstance(t.tool_name, str):
|
|
custom_tools.append(t)
|
|
else:
|
|
builtin_tools.append(t)
|
|
|
|
tool_template = None
|
|
if builtin_tools:
|
|
tool_gen = BuiltinToolGenerator()
|
|
tool_template = tool_gen.gen(builtin_tools)
|
|
|
|
sys_content += tool_template.render()
|
|
sys_content += "\n"
|
|
|
|
custom_tools = [dfn for dfn in request.tools if isinstance(dfn.tool_name, str)]
|
|
if custom_tools:
|
|
if request.tool_prompt_format != ToolPromptFormat.python_list:
|
|
raise ValueError(
|
|
f"Non supported ToolPromptFormat {request.tool_prompt_format}"
|
|
)
|
|
|
|
tool_gen = PythonListCustomToolGenerator()
|
|
tool_template = tool_gen.gen(custom_tools)
|
|
|
|
sys_content += tool_template.render()
|
|
sys_content += "\n"
|
|
|
|
if existing_system_message:
|
|
sys_content += interleaved_text_media_as_str(
|
|
existing_system_message.content, sep="\n"
|
|
)
|
|
|
|
messages.append(SystemMessage(content=sys_content))
|
|
|
|
# Add back existing messages from the request
|
|
messages += existing_messages
|
|
return messages
|