llama-stack/llama_stack/apis/scoring/scoring.py
Dinesh Yeduguru 0a3b3d5fb6
migrate scoring fns to resource (#422)
* fix after rebase

* remove print

---------

Co-authored-by: Dinesh Yeduguru <dineshyv@fb.com>
2024-11-11 17:28:48 -08:00

60 lines
1.6 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict, List, Protocol, runtime_checkable
from llama_models.schema_utils import json_schema_type, webmethod
from pydantic import BaseModel
from llama_models.llama3.api.datatypes import * # noqa: F403
from llama_stack.apis.scoring_functions import * # noqa: F403
# mapping of metric to value
ScoringResultRow = Dict[str, Any]
@json_schema_type
class ScoringResult(BaseModel):
score_rows: List[ScoringResultRow]
# aggregated metrics to value
aggregated_results: Dict[str, Any]
@json_schema_type
class ScoreBatchResponse(BaseModel):
dataset_id: Optional[str] = None
results: Dict[str, ScoringResult]
@json_schema_type
class ScoreResponse(BaseModel):
# each key in the dict is a scoring function name
results: Dict[str, ScoringResult]
class ScoringFunctionStore(Protocol):
def get_scoring_function(self, scoring_fn_id: str) -> ScoringFn: ...
@runtime_checkable
class Scoring(Protocol):
scoring_function_store: ScoringFunctionStore
@webmethod(route="/scoring/score_batch")
async def score_batch(
self,
dataset_id: str,
scoring_functions: Dict[str, Optional[ScoringFnParams]] = None,
save_results_dataset: bool = False,
) -> ScoreBatchResponse: ...
@webmethod(route="/scoring/score")
async def score(
self,
input_rows: List[Dict[str, Any]],
scoring_functions: Dict[str, Optional[ScoringFnParams]] = None,
) -> ScoreResponse: ...