forked from phoenix-oss/llama-stack-mirror
Test Plan: First, start a TGI container with `meta-llama/Llama-Guard-3-8B` model serving on port 5099. See https://github.com/meta-llama/llama-stack/pull/53 and its description for how. Then run llama-stack with the following run config: ``` image_name: safety docker_image: null conda_env: safety apis_to_serve: - models - inference - shields - safety api_providers: inference: providers: - remote::tgi safety: providers: - meta-reference telemetry: provider_id: meta-reference config: {} routing_table: inference: - provider_id: remote::tgi config: url: http://localhost:5099 api_token: null hf_endpoint_name: null routing_key: Llama-Guard-3-8B safety: - provider_id: meta-reference config: llama_guard_shield: model: Llama-Guard-3-8B excluded_categories: [] disable_input_check: false disable_output_check: false prompt_guard_shield: null routing_key: llama_guard ``` Now simply run `python -m llama_stack.apis.safety.client localhost <port>` and check that the llama_guard shield calls run correctly. (The injection_shield calls fail as expected since we have not set up a router for them.)
205 lines
5.5 KiB
Python
205 lines
5.5 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from enum import Enum
|
|
|
|
from typing import List, Literal, Optional, Protocol, Union
|
|
|
|
from llama_models.schema_utils import json_schema_type, webmethod
|
|
|
|
from pydantic import BaseModel, Field
|
|
from typing_extensions import Annotated
|
|
|
|
from llama_models.llama3.api.datatypes import * # noqa: F403
|
|
|
|
|
|
class LogProbConfig(BaseModel):
|
|
top_k: Optional[int] = 0
|
|
|
|
|
|
@json_schema_type
|
|
class QuantizationType(Enum):
|
|
bf16 = "bf16"
|
|
fp8 = "fp8"
|
|
|
|
|
|
@json_schema_type
|
|
class Fp8QuantizationConfig(BaseModel):
|
|
type: Literal[QuantizationType.fp8.value] = QuantizationType.fp8.value
|
|
|
|
|
|
@json_schema_type
|
|
class Bf16QuantizationConfig(BaseModel):
|
|
type: Literal[QuantizationType.bf16.value] = QuantizationType.bf16.value
|
|
|
|
|
|
QuantizationConfig = Annotated[
|
|
Union[Bf16QuantizationConfig, Fp8QuantizationConfig],
|
|
Field(discriminator="type"),
|
|
]
|
|
|
|
|
|
@json_schema_type
|
|
class ChatCompletionResponseEventType(Enum):
|
|
start = "start"
|
|
complete = "complete"
|
|
progress = "progress"
|
|
|
|
|
|
@json_schema_type
|
|
class ToolCallParseStatus(Enum):
|
|
started = "started"
|
|
in_progress = "in_progress"
|
|
failure = "failure"
|
|
success = "success"
|
|
|
|
|
|
@json_schema_type
|
|
class ToolCallDelta(BaseModel):
|
|
content: Union[str, ToolCall]
|
|
parse_status: ToolCallParseStatus
|
|
|
|
|
|
@json_schema_type
|
|
class ChatCompletionResponseEvent(BaseModel):
|
|
"""Chat completion response event."""
|
|
|
|
event_type: ChatCompletionResponseEventType
|
|
delta: Union[str, ToolCallDelta]
|
|
logprobs: Optional[List[TokenLogProbs]] = None
|
|
stop_reason: Optional[StopReason] = None
|
|
|
|
|
|
@json_schema_type
|
|
class CompletionRequest(BaseModel):
|
|
model: str
|
|
content: InterleavedTextMedia
|
|
sampling_params: Optional[SamplingParams] = SamplingParams()
|
|
|
|
stream: Optional[bool] = False
|
|
logprobs: Optional[LogProbConfig] = None
|
|
|
|
|
|
@json_schema_type
|
|
class CompletionResponse(BaseModel):
|
|
"""Completion response."""
|
|
|
|
completion_message: CompletionMessage
|
|
logprobs: Optional[List[TokenLogProbs]] = None
|
|
|
|
|
|
@json_schema_type
|
|
class CompletionResponseStreamChunk(BaseModel):
|
|
"""streamed completion response."""
|
|
|
|
delta: str
|
|
stop_reason: Optional[StopReason] = None
|
|
logprobs: Optional[List[TokenLogProbs]] = None
|
|
|
|
|
|
@json_schema_type
|
|
class BatchCompletionRequest(BaseModel):
|
|
model: str
|
|
content_batch: List[InterleavedTextMedia]
|
|
sampling_params: Optional[SamplingParams] = SamplingParams()
|
|
logprobs: Optional[LogProbConfig] = None
|
|
|
|
|
|
@json_schema_type
|
|
class BatchCompletionResponse(BaseModel):
|
|
"""Batch completion response."""
|
|
|
|
completion_message_batch: List[CompletionMessage]
|
|
|
|
|
|
@json_schema_type
|
|
class ChatCompletionRequest(BaseModel):
|
|
model: str
|
|
messages: List[Message]
|
|
sampling_params: Optional[SamplingParams] = SamplingParams()
|
|
|
|
# zero-shot tool definitions as input to the model
|
|
tools: Optional[List[ToolDefinition]] = Field(default_factory=list)
|
|
tool_choice: Optional[ToolChoice] = Field(default=ToolChoice.auto)
|
|
tool_prompt_format: Optional[ToolPromptFormat] = Field(
|
|
default=ToolPromptFormat.json
|
|
)
|
|
|
|
stream: Optional[bool] = False
|
|
logprobs: Optional[LogProbConfig] = None
|
|
|
|
|
|
@json_schema_type
|
|
class ChatCompletionResponseStreamChunk(BaseModel):
|
|
"""SSE-stream of these events."""
|
|
|
|
event: ChatCompletionResponseEvent
|
|
|
|
|
|
@json_schema_type
|
|
class ChatCompletionResponse(BaseModel):
|
|
"""Chat completion response."""
|
|
|
|
completion_message: CompletionMessage
|
|
logprobs: Optional[List[TokenLogProbs]] = None
|
|
|
|
|
|
@json_schema_type
|
|
class BatchChatCompletionRequest(BaseModel):
|
|
model: str
|
|
messages_batch: List[List[Message]]
|
|
sampling_params: Optional[SamplingParams] = SamplingParams()
|
|
|
|
# zero-shot tool definitions as input to the model
|
|
tools: Optional[List[ToolDefinition]] = Field(default_factory=list)
|
|
tool_choice: Optional[ToolChoice] = Field(default=ToolChoice.auto)
|
|
tool_prompt_format: Optional[ToolPromptFormat] = Field(
|
|
default=ToolPromptFormat.json
|
|
)
|
|
logprobs: Optional[LogProbConfig] = None
|
|
|
|
|
|
@json_schema_type
|
|
class BatchChatCompletionResponse(BaseModel):
|
|
completion_message_batch: List[CompletionMessage]
|
|
|
|
|
|
@json_schema_type
|
|
class EmbeddingsResponse(BaseModel):
|
|
embeddings: List[List[float]]
|
|
|
|
|
|
class Inference(Protocol):
|
|
@webmethod(route="/inference/completion")
|
|
async def completion(
|
|
self,
|
|
model: str,
|
|
content: InterleavedTextMedia,
|
|
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
) -> Union[CompletionResponse, CompletionResponseStreamChunk]: ...
|
|
|
|
@webmethod(route="/inference/chat_completion")
|
|
async def chat_completion(
|
|
self,
|
|
model: str,
|
|
messages: List[Message],
|
|
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
|
# zero-shot tool definitions as input to the model
|
|
tools: Optional[List[ToolDefinition]] = None,
|
|
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
|
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
) -> Union[ChatCompletionResponse, ChatCompletionResponseStreamChunk]: ...
|
|
|
|
@webmethod(route="/inference/embeddings")
|
|
async def embeddings(
|
|
self,
|
|
model: str,
|
|
contents: List[InterleavedTextMedia],
|
|
) -> EmbeddingsResponse: ...
|