llama-stack/llama_stack/templates/ollama/ollama.py
Francisco Arceo 119fe8742a
feat: Adding sqlite-vec as a vectordb (#1040)
# What does this PR do?
This PR adds `sqlite_vec` as an additional inline vectordb.

Tested with `ollama` by adding the `vector_io` object in
`./llama_stack/templates/ollama/run.yaml` :

```yaml
  vector_io:
  - provider_id: sqlite_vec
    provider_type: inline::sqlite_vec
    config:
      kvstore:
        type: sqlite
        namespace: null
        db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/ollama}/sqlite_vec.db
      db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/ollama}/sqlite_vec.db
```
I also updated the `./tests/client-sdk/vector_io/test_vector_io.py` test
file with:
```python
INLINE_VECTOR_DB_PROVIDERS = ["faiss", "sqlite_vec"]
```
And parameterized the relevant tests. 

[//]: # (If resolving an issue, uncomment and update the line below)
# Closes 
https://github.com/meta-llama/llama-stack/issues/1005

## Test Plan
I ran the tests with:
```bash
INFERENCE_MODEL=llama3.2:3b-instruct-fp16 LLAMA_STACK_CONFIG=ollama pytest -s -v tests/client-sdk/vector_io/test_vector_io.py
```
Which outputs:
```python
...
PASSED
tests/client-sdk/vector_io/test_vector_io.py::test_vector_db_retrieve[all-MiniLM-L6-v2-sqlite_vec] PASSED
tests/client-sdk/vector_io/test_vector_io.py::test_vector_db_list PASSED
tests/client-sdk/vector_io/test_vector_io.py::test_vector_db_register[all-MiniLM-L6-v2-faiss] PASSED
tests/client-sdk/vector_io/test_vector_io.py::test_vector_db_register[all-MiniLM-L6-v2-sqlite_vec] PASSED
tests/client-sdk/vector_io/test_vector_io.py::test_vector_db_unregister[faiss] PASSED
tests/client-sdk/vector_io/test_vector_io.py::test_vector_db_unregister[sqlite_vec] PASSED
```

In addition, I ran the `rag_with_vector_db.py`
[example](https://github.com/meta-llama/llama-stack-apps/blob/main/examples/agents/rag_with_vector_db.py)
using the script below with `uv run rag_example.py`.
<details>
<summary>CLICK TO SHOW SCRIPT 👋  </summary>

```python
#!/usr/bin/env python3
import os
import uuid
from termcolor import cprint

# Set environment variables
os.environ['INFERENCE_MODEL'] = 'llama3.2:3b-instruct-fp16'
os.environ['LLAMA_STACK_CONFIG'] = 'ollama'

# Import libraries after setting environment variables
from llama_stack.distribution.library_client import LlamaStackAsLibraryClient
from llama_stack_client.lib.agents.agent import Agent
from llama_stack_client.lib.agents.event_logger import EventLogger
from llama_stack_client.types.agent_create_params import AgentConfig
from llama_stack_client.types import Document


def main():
    # Initialize the client
    client = LlamaStackAsLibraryClient("ollama")
    vector_db_id = f"test-vector-db-{uuid.uuid4().hex}"

    _ = client.initialize()

    model_id = 'llama3.2:3b-instruct-fp16'

    # Define the list of document URLs and create Document objects
    urls = [
        "chat.rst",
        "llama3.rst",
        "memory_optimizations.rst",
        "lora_finetune.rst",
    ]
    documents = [
        Document(
            document_id=f"num-{i}",
            content=f"https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/{url}",
            mime_type="text/plain",
            metadata={},
        )
        for i, url in enumerate(urls)
    ]
    # (Optional) Use the documents as needed with your client here

    client.vector_dbs.register(
        provider_id='sqlite_vec',
        vector_db_id=vector_db_id,
        embedding_model="all-MiniLM-L6-v2",
        embedding_dimension=384,
    )

    client.tool_runtime.rag_tool.insert(
        documents=documents,
        vector_db_id=vector_db_id,
        chunk_size_in_tokens=512,
    )
    # Create agent configuration
    agent_config = AgentConfig(
        model=model_id,
        instructions="You are a helpful assistant",
        enable_session_persistence=False,
        toolgroups=[
            {
                "name": "builtin::rag",
                "args": {
                    "vector_db_ids": [vector_db_id],
                }
            }
        ],
    )

    # Instantiate the Agent
    agent = Agent(client, agent_config)

    # List of user prompts
    user_prompts = [
        "What are the top 5 topics that were explained in the documentation? Only list succinct bullet points.",
        "Was anything related to 'Llama3' discussed, if so what?",
        "Tell me how to use LoRA",
        "What about Quantization?",
    ]

    # Create a session for the agent
    session_id = agent.create_session("test-session")

    # Process each prompt and display the output
    for prompt in user_prompts:
        cprint(f"User> {prompt}", "green")
        response = agent.create_turn(
            messages=[
                {
                    "role": "user",
                    "content": prompt,
                }
            ],
            session_id=session_id,
        )
        # Log and print events from the response
        for log in EventLogger().log(response):
            log.print()


if __name__ == "__main__":
    main()
```
</details>

Which outputs a large summary of RAG generation.

# Documentation

Will handle documentation updates in follow-up PR.

# (- [ ] Added a Changelog entry if the change is significant)

---------

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
2025-02-12 10:50:03 -08:00

168 lines
5.9 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from pathlib import Path
from llama_stack.apis.models.models import ModelType
from llama_stack.distribution.datatypes import (
ModelInput,
Provider,
ShieldInput,
ToolGroupInput,
)
from llama_stack.providers.inline.inference.sentence_transformers import (
SentenceTransformersInferenceConfig,
)
from llama_stack.providers.inline.vector_io.faiss.config import FaissImplConfig
from llama_stack.providers.inline.vector_io.sqlite_vec.config import SQLiteVectorIOConfig
from llama_stack.providers.remote.inference.ollama import OllamaImplConfig
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings
def get_distribution_template() -> DistributionTemplate:
providers = {
"inference": ["remote::ollama"],
"vector_io": ["inline::faiss", "remote::chromadb", "remote::pgvector"],
"safety": ["inline::llama-guard"],
"agents": ["inline::meta-reference"],
"telemetry": ["inline::meta-reference"],
"eval": ["inline::meta-reference"],
"datasetio": ["remote::huggingface", "inline::localfs"],
"scoring": ["inline::basic", "inline::llm-as-judge", "inline::braintrust"],
"tool_runtime": [
"remote::brave-search",
"remote::tavily-search",
"inline::code-interpreter",
"inline::rag-runtime",
],
}
name = "ollama"
inference_provider = Provider(
provider_id="ollama",
provider_type="remote::ollama",
config=OllamaImplConfig.sample_run_config(),
)
embedding_provider = Provider(
provider_id="sentence-transformers",
provider_type="inline::sentence-transformers",
config=SentenceTransformersInferenceConfig.sample_run_config(),
)
vector_io_provider_faiss = Provider(
provider_id="faiss",
provider_type="inline::faiss",
config=FaissImplConfig.sample_run_config(f"distributions/{name}"),
)
vector_io_provider_sqlite = Provider(
provider_id="sqlite_vec",
provider_type="inline::sqlite_vec",
config=SQLiteVectorIOConfig.sample_run_config(f"distributions/{name}"),
)
inference_model = ModelInput(
model_id="${env.INFERENCE_MODEL}",
provider_id="ollama",
)
safety_model = ModelInput(
model_id="${env.SAFETY_MODEL}",
provider_id="ollama",
)
embedding_model = ModelInput(
model_id="all-MiniLM-L6-v2",
provider_id="sentence-transformers",
model_type=ModelType.embedding,
metadata={
"embedding_dimension": 384,
},
)
default_tool_groups = [
ToolGroupInput(
toolgroup_id="builtin::websearch",
provider_id="tavily-search",
),
ToolGroupInput(
toolgroup_id="builtin::rag",
provider_id="rag-runtime",
),
ToolGroupInput(
toolgroup_id="builtin::code_interpreter",
provider_id="code-interpreter",
),
]
return DistributionTemplate(
name=name,
distro_type="self_hosted",
description="Use (an external) Ollama server for running LLM inference",
container_image=None,
template_path=Path(__file__).parent / "doc_template.md",
providers=providers,
default_models=[inference_model, safety_model],
run_configs={
"run.yaml": RunConfigSettings(
provider_overrides={
"inference": [inference_provider, embedding_provider],
"vector_io": [vector_io_provider_faiss, vector_io_provider_sqlite],
},
default_models=[inference_model, embedding_model],
default_tool_groups=default_tool_groups,
),
"run-with-safety.yaml": RunConfigSettings(
provider_overrides={
"inference": [
inference_provider,
embedding_provider,
],
"vector_io": [vector_io_provider_faiss, vector_io_provider_faiss],
"safety": [
Provider(
provider_id="llama-guard",
provider_type="inline::llama-guard",
config={},
),
Provider(
provider_id="code-scanner",
provider_type="inline::code-scanner",
config={},
),
],
},
default_models=[
inference_model,
safety_model,
embedding_model,
],
default_shields=[
ShieldInput(
shield_id="${env.SAFETY_MODEL}",
provider_id="llama-guard",
),
ShieldInput(
shield_id="CodeScanner",
provider_id="code-scanner",
),
],
default_tool_groups=default_tool_groups,
),
},
run_config_env_vars={
"LLAMA_STACK_PORT": (
"5001",
"Port for the Llama Stack distribution server",
),
"OLLAMA_URL": (
"http://127.0.0.1:11434",
"URL of the Ollama server",
),
"INFERENCE_MODEL": (
"meta-llama/Llama-3.2-3B-Instruct",
"Inference model loaded into the Ollama server",
),
"SAFETY_MODEL": (
"meta-llama/Llama-Guard-3-1B",
"Safety model loaded into the Ollama server",
),
},
)