forked from phoenix-oss/llama-stack-mirror
File "/usr/local/lib/python3.10/site-packages/llama_stack/providers/adapters/inference/vllm/vllm.py", line 136, in _stream_chat_completion async for chunk in process_chat_completion_stream_response( TypeError: process_chat_completion_stream_response() takes 2 positional arguments but 3 were given This corrects the error by deleting the request variable
154 lines
6 KiB
Python
154 lines
6 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
from typing import AsyncGenerator
|
|
|
|
from llama_models.llama3.api.chat_format import ChatFormat
|
|
from llama_models.llama3.api.datatypes import Message
|
|
from llama_models.llama3.api.tokenizer import Tokenizer
|
|
|
|
from openai import OpenAI
|
|
|
|
from llama_stack.apis.inference import * # noqa: F403
|
|
from llama_stack.providers.datatypes import ModelsProtocolPrivate
|
|
|
|
from llama_stack.providers.utils.inference.openai_compat import (
|
|
get_sampling_options,
|
|
process_chat_completion_response,
|
|
process_chat_completion_stream_response,
|
|
)
|
|
from llama_stack.providers.utils.inference.prompt_adapter import (
|
|
chat_completion_request_to_prompt,
|
|
)
|
|
|
|
from .config import VLLMImplConfig
|
|
|
|
VLLM_SUPPORTED_MODELS = {
|
|
"Llama3.1-8B": "meta-llama/Llama-3.1-8B",
|
|
"Llama3.1-70B": "meta-llama/Llama-3.1-70B",
|
|
"Llama3.1-405B:bf16-mp8": "meta-llama/Llama-3.1-405B",
|
|
"Llama3.1-405B": "meta-llama/Llama-3.1-405B-FP8",
|
|
"Llama3.1-405B:bf16-mp16": "meta-llama/Llama-3.1-405B",
|
|
"Llama3.1-8B-Instruct": "meta-llama/Llama-3.1-8B-Instruct",
|
|
"Llama3.1-70B-Instruct": "meta-llama/Llama-3.1-70B-Instruct",
|
|
"Llama3.1-405B-Instruct:bf16-mp8": "meta-llama/Llama-3.1-405B-Instruct",
|
|
"Llama3.1-405B-Instruct": "meta-llama/Llama-3.1-405B-Instruct-FP8",
|
|
"Llama3.1-405B-Instruct:bf16-mp16": "meta-llama/Llama-3.1-405B-Instruct",
|
|
"Llama3.2-1B": "meta-llama/Llama-3.2-1B",
|
|
"Llama3.2-3B": "meta-llama/Llama-3.2-3B",
|
|
"Llama3.2-11B-Vision": "meta-llama/Llama-3.2-11B-Vision",
|
|
"Llama3.2-90B-Vision": "meta-llama/Llama-3.2-90B-Vision",
|
|
"Llama3.2-1B-Instruct": "meta-llama/Llama-3.2-1B-Instruct",
|
|
"Llama3.2-3B-Instruct": "meta-llama/Llama-3.2-3B-Instruct",
|
|
"Llama3.2-11B-Vision-Instruct": "meta-llama/Llama-3.2-11B-Vision-Instruct",
|
|
"Llama3.2-90B-Vision-Instruct": "meta-llama/Llama-3.2-90B-Vision-Instruct",
|
|
"Llama-Guard-3-11B-Vision": "meta-llama/Llama-Guard-3-11B-Vision",
|
|
"Llama-Guard-3-1B:int4-mp1": "meta-llama/Llama-Guard-3-1B-INT4",
|
|
"Llama-Guard-3-1B": "meta-llama/Llama-Guard-3-1B",
|
|
"Llama-Guard-3-8B": "meta-llama/Llama-Guard-3-8B",
|
|
"Llama-Guard-3-8B:int8-mp1": "meta-llama/Llama-Guard-3-8B-INT8",
|
|
"Prompt-Guard-86M": "meta-llama/Prompt-Guard-86M",
|
|
"Llama-Guard-2-8B": "meta-llama/Llama-Guard-2-8B",
|
|
}
|
|
|
|
|
|
class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|
def __init__(self, config: VLLMImplConfig) -> None:
|
|
self.config = config
|
|
self.formatter = ChatFormat(Tokenizer.get_instance())
|
|
self.client = None
|
|
|
|
async def initialize(self) -> None:
|
|
self.client = OpenAI(base_url=self.config.url, api_key=self.config.api_token)
|
|
|
|
async def register_model(self, model: ModelDef) -> None:
|
|
raise ValueError("Model registration is not supported for vLLM models")
|
|
|
|
async def shutdown(self) -> None:
|
|
pass
|
|
|
|
async def list_models(self) -> List[ModelDef]:
|
|
return [
|
|
ModelDef(identifier=model.id, llama_model=model.id)
|
|
for model in self.client.models.list()
|
|
]
|
|
|
|
async def completion(
|
|
self,
|
|
model: str,
|
|
content: InterleavedTextMedia,
|
|
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
|
response_format: Optional[ResponseFormat] = None,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
) -> Union[CompletionResponse, CompletionResponseStreamChunk]:
|
|
raise NotImplementedError()
|
|
|
|
async def chat_completion(
|
|
self,
|
|
model: str,
|
|
messages: List[Message],
|
|
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
|
response_format: Optional[ResponseFormat] = None,
|
|
tools: Optional[List[ToolDefinition]] = None,
|
|
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
|
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
) -> AsyncGenerator:
|
|
request = ChatCompletionRequest(
|
|
model=model,
|
|
messages=messages,
|
|
sampling_params=sampling_params,
|
|
tools=tools or [],
|
|
tool_choice=tool_choice,
|
|
tool_prompt_format=tool_prompt_format,
|
|
stream=stream,
|
|
logprobs=logprobs,
|
|
)
|
|
if stream:
|
|
return self._stream_chat_completion(request, self.client)
|
|
else:
|
|
return await self._nonstream_chat_completion(request, self.client)
|
|
|
|
async def _nonstream_chat_completion(
|
|
self, request: ChatCompletionRequest, client: OpenAI
|
|
) -> ChatCompletionResponse:
|
|
params = self._get_params(request)
|
|
r = client.completions.create(**params)
|
|
return process_chat_completion_response(request, r, self.formatter)
|
|
|
|
async def _stream_chat_completion(
|
|
self, request: ChatCompletionRequest, client: OpenAI
|
|
) -> AsyncGenerator:
|
|
params = self._get_params(request)
|
|
|
|
# TODO: Can we use client.completions.acreate() or maybe there is another way to directly create an async
|
|
# generator so this wrapper is not necessary?
|
|
async def _to_async_generator():
|
|
s = client.completions.create(**params)
|
|
for chunk in s:
|
|
yield chunk
|
|
|
|
stream = _to_async_generator()
|
|
async for chunk in process_chat_completion_stream_response(
|
|
stream, self.formatter
|
|
):
|
|
yield chunk
|
|
|
|
def _get_params(self, request: ChatCompletionRequest) -> dict:
|
|
return {
|
|
"model": VLLM_SUPPORTED_MODELS[request.model],
|
|
"prompt": chat_completion_request_to_prompt(request, self.formatter),
|
|
"stream": request.stream,
|
|
**get_sampling_options(request.sampling_params),
|
|
}
|
|
|
|
async def embeddings(
|
|
self,
|
|
model: str,
|
|
contents: List[InterleavedTextMedia],
|
|
) -> EmbeddingsResponse:
|
|
raise NotImplementedError()
|