Composable building blocks to build Llama Apps
Find a file
Botao Chen 123fb9eb24
feat: [post training] support save hf safetensor format checkpoint (#845)
## context

Now, in llama stack, we only support inference / eval a finetuned
checkpoint with meta-reference as inference provider. This is
sub-optimal since meta-reference is pretty slow.

Our vision is that developer can inference / eval a finetuned checkpoint
produced by post training apis with all the inference providers on the
stack. To achieve this, we'd like to define an unified output checkpoint
format for post training providers. So that, all the inference provider
can respect that format for customized model inference.

By spotting check how
[ollama](https://github.com/ollama/ollama/blob/main/docs/import.md) and
[fireworks](https://docs.fireworks.ai/models/uploading-custom-models) do
inference on a customized model, we defined the output checkpoint format
as /adapter/adapter_config.json and /adapter/adapter_model.safetensors
(as we only support LoRA post training now, we begin from adapter only
checkpoint)

## test
we kick off a post training job and configured checkpoint format as
'huggingface'. Output files
![Screenshot 2025-02-24 at 11 54
33 PM](https://github.com/user-attachments/assets/fb45a5d7-f288-4d30-82f8-b7a8da2859be)



we did a proof of concept with ollama to see if ollama can inference our
finetuned checkpoint
1. create Modelfile like 

<img width="799" alt="Screenshot 2025-01-22 at 5 04 18 PM"
src="https://github.com/user-attachments/assets/7fca9ac3-a294-44f8-aab1-83852c600609"
/>

2. create a customized model with `ollama create llama_3_2_finetuned`
and run inference successfully

![Screenshot 2025-02-24 at 11 55
17 PM](https://github.com/user-attachments/assets/1abe7c52-c6a7-491a-b07c-b7a8e3fd1ddd)


This is just a proof of concept with ollama cmd line. As next step, we'd
like to wrap loading / inference customized model logic in the inference
provider implementation.
2025-02-25 23:29:08 -08:00
.github ci: improve GitHub Actions workflow for website builds (#1151) 2025-02-20 21:37:37 -08:00
distributions feat: add (openai, anthropic, gemini) providers via litellm (#1267) 2025-02-25 22:07:33 -08:00
docs feat: [post training] support save hf safetensor format checkpoint (#845) 2025-02-25 23:29:08 -08:00
llama_stack feat: [post training] support save hf safetensor format checkpoint (#845) 2025-02-25 23:29:08 -08:00
rfcs docs: Fix url to the llama-stack-spec yaml/html files (#1081) 2025-02-13 12:39:26 -08:00
tests/client-sdk feat: add (openai, anthropic, gemini) providers via litellm (#1267) 2025-02-25 22:07:33 -08:00
.gitignore github: ignore non-hidden python virtual environments (#939) 2025-02-03 11:53:05 -08:00
.gitmodules chore: removed executorch submodule (#1265) 2025-02-25 21:57:21 -08:00
.pre-commit-config.yaml build: Merge redundant "files" field for codegen check in .pre-commit-config.yaml (#1261) 2025-02-25 20:56:22 -08:00
.python-version build: hint on Python version for uv venv (#1172) 2025-02-25 10:37:45 -05:00
.readthedocs.yaml first version of readthedocs (#278) 2024-10-22 10:15:58 +05:30
CODE_OF_CONDUCT.md Initial commit 2024-07-23 08:32:33 -07:00
CONTRIBUTING.md docs: Add missing uv command and clarify website rebuild (#1199) 2025-02-21 11:29:32 -05:00
LICENSE Update LICENSE (#47) 2024-08-29 07:39:50 -07:00
MANIFEST.in feat: completing text /chat-completion and /completion tests (#1223) 2025-02-25 11:37:04 -08:00
pyproject.toml fix: resolve type hint issues and import dependencies (#1176) 2025-02-25 11:06:47 -08:00
README.md docs: Simplify installation guide with uv (#1196) 2025-02-20 21:05:47 -08:00
requirements.txt fix: pre-commit updates (#1243) 2025-02-24 17:20:29 -08:00
SECURITY.md Create SECURITY.md 2024-10-08 13:30:40 -04:00
uv.lock fix: pre-commit updates (#1243) 2025-02-24 17:20:29 -08:00

Llama Stack

PyPI version PyPI - Downloads License Discord

Quick Start | Documentation | Colab Notebook

Llama Stack standardizes the core building blocks that simplify AI application development. It codifies best practices across the Llama ecosystem. More specifically, it provides

  • Unified API layer for Inference, RAG, Agents, Tools, Safety, Evals, and Telemetry.
  • Plugin architecture to support the rich ecosystem of different API implementations in various environments, including local development, on-premises, cloud, and mobile.
  • Prepackaged verified distributions which offer a one-stop solution for developers to get started quickly and reliably in any environment.
  • Multiple developer interfaces like CLI and SDKs for Python, Typescript, iOS, and Android.
  • Standalone applications as examples for how to build production-grade AI applications with Llama Stack.
Llama Stack

Llama Stack Benefits

  • Flexible Options: Developers can choose their preferred infrastructure without changing APIs and enjoy flexible deployment choices.
  • Consistent Experience: With its unified APIs, Llama Stack makes it easier to build, test, and deploy AI applications with consistent application behavior.
  • Robust Ecosystem: Llama Stack is already integrated with distribution partners (cloud providers, hardware vendors, and AI-focused companies) that offer tailored infrastructure, software, and services for deploying Llama models.

By reducing friction and complexity, Llama Stack empowers developers to focus on what they do best: building transformative generative AI applications.

API Providers

Here is a list of the various API providers and available distributions that can help developers get started easily with Llama Stack.

API Provider Builder Environments Agents Inference Memory Safety Telemetry
Meta Reference Single Node
SambaNova Hosted
Cerebras Hosted
Fireworks Hosted
AWS Bedrock Hosted
Together Hosted
Groq Hosted
Ollama Single Node
TGI Hosted and Single Node
NVIDIA NIM Hosted and Single Node
Chroma Single Node
PG Vector Single Node
PyTorch ExecuTorch On-device iOS
vLLM Hosted and Single Node

Distributions

A Llama Stack Distribution (or "distro") is a pre-configured bundle of provider implementations for each API component. Distributions make it easy to get started with a specific deployment scenario - you can begin with a local development setup (eg. ollama) and seamlessly transition to production (eg. Fireworks) without changing your application code. Here are some of the distributions we support:

Distribution Llama Stack Docker Start This Distribution
Meta Reference llamastack/distribution-meta-reference-gpu Guide
Meta Reference Quantized llamastack/distribution-meta-reference-quantized-gpu Guide
SambaNova llamastack/distribution-sambanova Guide
Cerebras llamastack/distribution-cerebras Guide
Ollama llamastack/distribution-ollama Guide
TGI llamastack/distribution-tgi Guide
Together llamastack/distribution-together Guide
Fireworks llamastack/distribution-fireworks Guide
vLLM llamastack/distribution-remote-vllm Guide

Installation

You have two ways to install this repository:

  • Install as a package: You can install the repository directly from PyPI by running the following command:

    pip install llama-stack
    
  • Install from source: If you prefer to install from the source code, we recommend using uv. Then, run the following commands:

     git clone git@github.com:meta-llama/llama-stack.git
     cd llama-stack
    
     uv sync
     uv pip install -e .
    

Documentation

Please checkout our Documentation page for more details.

Llama Stack Client SDKs

Language Client SDK Package
Python llama-stack-client-python PyPI version
Swift llama-stack-client-swift Swift Package Index
Typescript llama-stack-client-typescript NPM version
Kotlin llama-stack-client-kotlin Maven version

Check out our client SDKs for connecting to a Llama Stack server in your preferred language, you can choose from python, typescript, swift, and kotlin programming languages to quickly build your applications.

You can find more example scripts with client SDKs to talk with the Llama Stack server in our llama-stack-apps repo.