llama-stack/llama_stack/apis/datasets/datasets.py
2025-03-12 18:38:07 -07:00

159 lines
4.3 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from enum import Enum
from typing import Annotated, Any, Dict, List, Literal, Optional, Protocol, Union
from pydantic import BaseModel, Field
from llama_stack.apis.resource import Resource, ResourceType
from llama_stack.schema_utils import json_schema_type, register_schema, webmethod
class DatasetPurpose(Enum):
"""
Purpose of the dataset. Each type has a different column format.
:cvar tuning/messages: The dataset contains messages used for post-training. Examples:
{
"messages": [
{"role": "user", "content": "Hello, world!"},
{"role": "assistant", "content": "Hello, world!"},
]
}
"""
tuning_messages = "tuning/messages"
# TODO: add more schemas here
class DatasetType(Enum):
huggingface = "huggingface"
uri = "uri"
rows = "rows"
@json_schema_type
class URIDataSource(BaseModel):
type: Literal["uri"] = "uri"
uri: str
@json_schema_type
class HuggingfaceDataSource(BaseModel):
type: Literal["huggingface"] = "huggingface"
dataset_path: str
params: Dict[str, Any]
@json_schema_type
class RowsDataSource(BaseModel):
type: Literal["rows"] = "rows"
rows: List[Dict[str, Any]]
DataSource = register_schema(
Annotated[
Union[URIDataSource, HuggingfaceDataSource, RowsDataSource],
Field(discriminator="type"),
],
name="DataSource",
)
class CommonDatasetFields(BaseModel):
schema: Schema
data_source: DataSource
metadata: Dict[str, Any] = Field(
default_factory=dict,
description="Any additional metadata for this dataset",
)
@json_schema_type
class Dataset(CommonDatasetFields, Resource):
type: Literal[ResourceType.dataset.value] = ResourceType.dataset.value
@property
def dataset_id(self) -> str:
return self.identifier
@property
def provider_dataset_id(self) -> str:
return self.provider_resource_id
class DatasetInput(CommonDatasetFields, BaseModel):
dataset_id: str
provider_id: Optional[str] = None
provider_dataset_id: Optional[str] = None
class ListDatasetsResponse(BaseModel):
data: List[Dataset]
class Datasets(Protocol):
@webmethod(route="/datasets", method="POST")
async def register_dataset(
self,
purpose: DatasetPurpose,
source: DataSource,
metadata: Optional[Dict[str, Any]] = None,
dataset_id: Optional[str] = None,
) -> Dataset:
"""
Register a new dataset.
:param schema: The schema format of the dataset. One of
- messages: The dataset contains a messages column with list of messages for post-training.
:param data_source: The data source of the dataset. Examples:
- {
"type": "uri",
"uri": "https://mywebsite.com/mydata.jsonl"
}
- {
"type": "uri",
"uri": "lsfs://mydata.jsonl"
}
- {
"type": "huggingface",
"dataset_path": "tatsu-lab/alpaca",
"params": {
"split": "train"
}
}
- {
"type": "rows",
"rows": [
{
"messages": [
{"role": "user", "content": "Hello, world!"},
{"role": "assistant", "content": "Hello, world!"},
]
}
]
}
:param metadata: The metadata for the dataset.
- E.g. {"description": "My dataset"}
:param dataset_id: The ID of the dataset. If not provided, a random ID will be generated.
"""
...
@webmethod(route="/datasets/{dataset_id:path}", method="GET")
async def get_dataset(
self,
dataset_id: str,
) -> Optional[Dataset]: ...
@webmethod(route="/datasets", method="GET")
async def list_datasets(self) -> ListDatasetsResponse: ...
@webmethod(route="/datasets/{dataset_id:path}", method="DELETE")
async def unregister_dataset(
self,
dataset_id: str,
) -> None: ...