llama-stack/tests/unit/providers/nvidia/test_parameters.py
Rashmi Pawar 1a73f8305b
feat: Add nemo customizer (#1448)
# What does this PR do?

This PR adds support for NVIDIA's NeMo Customizer API to the Llama Stack
post-training module. The integration enables users to fine-tune models
using NVIDIA's cloud-based customization service through a consistent
Llama Stack interface.


[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]
Yet to be done

Things pending under this PR:

- [x] Integration of fine-tuned model(new checkpoint) for inference with
nvidia llm distribution
- [x] distribution integration of API
- [x] Add test cases for customizer(In Progress)
- [x] Documentation

```

LLAMA_STACK_BASE_URL=http://localhost:5002 pytest -v tests/client-sdk/post_training/test_supervised_fine_tuning.py 

============================================================================================================================================================================ test session starts =============================================================================================================================================================================
platform linux -- Python 3.10.0, pytest-8.3.4, pluggy-1.5.0 -- /home/ubuntu/llama-stack/.venv/bin/python
cachedir: .pytest_cache
metadata: {'Python': '3.10.0', 'Platform': 'Linux-6.8.0-1021-gcp-x86_64-with-glibc2.35', 'Packages': {'pytest': '8.3.4', 'pluggy': '1.5.0'}, 'Plugins': {'nbval': '0.11.0', 'metadata': '3.1.1', 'anyio': '4.8.0', 'html': '4.1.1', 'asyncio': '0.25.3'}}
rootdir: /home/ubuntu/llama-stack
configfile: pyproject.toml
plugins: nbval-0.11.0, metadata-3.1.1, anyio-4.8.0, html-4.1.1, asyncio-0.25.3
asyncio: mode=strict, asyncio_default_fixture_loop_scope=None
collected 2 items                                                                                                                                                                                                                                                                                                                                                            

tests/client-sdk/post_training/test_supervised_fine_tuning.py::test_post_training_provider_registration[txt=8B] PASSED                                                                                                                                                                                                                                                 [ 50%]
tests/client-sdk/post_training/test_supervised_fine_tuning.py::test_list_training_jobs[txt=8B] PASSED                                                                                                                                                                                                                                                                  [100%]

======================================================================================================================================================================== 2 passed, 1 warning in 0.10s ========================================================================================================================================================================
```
cc: @mattf @dglogo @sumitb

---------

Co-authored-by: Ubuntu <ubuntu@llama-stack-customizer-dev-inst-2tx95fyisatvlic4we8hidx5tfj.us-central1-a.c.brevdevprod.internal>
2025-03-25 11:01:10 -07:00

271 lines
9.4 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import os
import unittest
import warnings
from unittest.mock import patch
import pytest
from llama_stack_client.types.algorithm_config_param import LoraFinetuningConfig
from llama_stack_client.types.post_training_supervised_fine_tune_params import (
TrainingConfig,
TrainingConfigDataConfig,
TrainingConfigOptimizerConfig,
TrainingConfigEfficiencyConfig,
)
from llama_stack.providers.remote.post_training.nvidia.post_training import (
NvidiaPostTrainingAdapter,
NvidiaPostTrainingConfig,
)
class TestNvidiaParameters(unittest.TestCase):
def setUp(self):
os.environ["NVIDIA_BASE_URL"] = "http://nemo.test"
os.environ["NVIDIA_CUSTOMIZER_URL"] = "http://nemo.test"
config = NvidiaPostTrainingConfig(
base_url=os.environ["NVIDIA_BASE_URL"], customizer_url=os.environ["NVIDIA_CUSTOMIZER_URL"], api_key=None
)
self.adapter = NvidiaPostTrainingAdapter(config)
self.make_request_patcher = patch(
"llama_stack.providers.remote.post_training.nvidia.post_training.NvidiaPostTrainingAdapter._make_request"
)
self.mock_make_request = self.make_request_patcher.start()
self.mock_make_request.return_value = {
"id": "job-123",
"status": "created",
"created_at": "2025-03-04T13:07:47.543605",
"updated_at": "2025-03-04T13:07:47.543605",
}
def tearDown(self):
self.make_request_patcher.stop()
def _assert_request_params(self, expected_json):
"""Helper method to verify parameters in the request JSON."""
call_args = self.mock_make_request.call_args
actual_json = call_args[1]["json"]
for key, value in expected_json.items():
if isinstance(value, dict):
for nested_key, nested_value in value.items():
assert actual_json[key][nested_key] == nested_value
else:
assert actual_json[key] == value
@pytest.fixture(autouse=True)
def inject_fixtures(self, run_async):
self.run_async = run_async
def test_customizer_parameters_passed(self):
"""Test scenario 1: When an optional parameter is passed and value is correctly set."""
custom_adapter_dim = 32 # Different from default of 8
algorithm_config = LoraFinetuningConfig(
type="LoRA",
adapter_dim=custom_adapter_dim,
adapter_dropout=0.2,
apply_lora_to_mlp=True,
apply_lora_to_output=True,
alpha=16,
rank=16,
lora_attn_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
)
data_config = TrainingConfigDataConfig(dataset_id="test-dataset", batch_size=16)
optimizer_config = TrainingConfigOptimizerConfig(lr=0.0002)
training_config = TrainingConfig(
n_epochs=3,
data_config=data_config,
optimizer_config=optimizer_config,
)
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always")
self.run_async(
self.adapter.supervised_fine_tune(
job_uuid="test-job",
model="meta-llama/Llama-3.1-8B-Instruct",
checkpoint_dir="",
algorithm_config=algorithm_config,
training_config=training_config,
logger_config={},
hyperparam_search_config={},
)
)
warning_texts = [str(warning.message) for warning in w]
fields = [
"apply_lora_to_output",
"lora_attn_modules",
"apply_lora_to_mlp",
]
for field in fields:
assert any(field in text for text in warning_texts)
self._assert_request_params(
{
"hyperparameters": {
"lora": {"adapter_dim": custom_adapter_dim, "adapter_dropout": 0.2, "alpha": 16},
"epochs": 3,
"learning_rate": 0.0002,
"batch_size": 16,
}
}
)
def test_required_parameters_passed(self):
"""Test scenario 2: When required parameters are passed."""
required_model = "meta-llama/Llama-3.1-8B-Instruct"
required_dataset_id = "required-dataset"
required_job_uuid = "required-job"
algorithm_config = LoraFinetuningConfig(
type="LoRA",
adapter_dim=16,
adapter_dropout=0.1,
apply_lora_to_mlp=True,
apply_lora_to_output=True,
alpha=16,
rank=16,
lora_attn_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
)
data_config = TrainingConfigDataConfig(
dataset_id=required_dataset_id, # Required parameter
batch_size=8,
)
optimizer_config = TrainingConfigOptimizerConfig(lr=0.0001)
training_config = TrainingConfig(
n_epochs=1,
data_config=data_config,
optimizer_config=optimizer_config,
)
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always")
self.run_async(
self.adapter.supervised_fine_tune(
job_uuid=required_job_uuid, # Required parameter
model=required_model, # Required parameter
checkpoint_dir="",
algorithm_config=algorithm_config,
training_config=training_config,
logger_config={},
hyperparam_search_config={},
)
)
warning_texts = [str(warning.message) for warning in w]
fields = [
"rank",
"apply_lora_to_output",
"lora_attn_modules",
"apply_lora_to_mlp",
]
for field in fields:
assert any(field in text for text in warning_texts)
self.mock_make_request.assert_called_once()
call_args = self.mock_make_request.call_args
assert call_args[1]["json"]["config"] == "meta/llama-3.1-8b-instruct"
assert call_args[1]["json"]["dataset"]["name"] == required_dataset_id
def test_unsupported_parameters_warning(self):
"""Test that warnings are raised for unsupported parameters."""
data_config = TrainingConfigDataConfig(
dataset_id="test-dataset",
batch_size=8,
# Unsupported parameters
shuffle=True,
data_format="instruct",
validation_dataset_id="val-dataset",
)
optimizer_config = TrainingConfigOptimizerConfig(
lr=0.0001,
weight_decay=0.01,
# Unsupported parameters
optimizer_type="adam",
num_warmup_steps=100,
)
efficiency_config = TrainingConfigEfficiencyConfig(
enable_activation_checkpointing=True # Unsupported parameter
)
training_config = TrainingConfig(
n_epochs=1,
data_config=data_config,
optimizer_config=optimizer_config,
# Unsupported parameters
efficiency_config=efficiency_config,
max_steps_per_epoch=1000,
gradient_accumulation_steps=4,
max_validation_steps=100,
dtype="bf16",
)
# Capture warnings
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always")
self.run_async(
self.adapter.supervised_fine_tune(
job_uuid="test-job",
model="meta-llama/Llama-3.1-8B-Instruct",
checkpoint_dir="test-dir", # Unsupported parameter
algorithm_config=LoraFinetuningConfig(
type="LoRA",
adapter_dim=16,
adapter_dropout=0.1,
apply_lora_to_mlp=True,
apply_lora_to_output=True,
alpha=16,
rank=16,
lora_attn_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
),
training_config=training_config,
logger_config={"test": "value"}, # Unsupported parameter
hyperparam_search_config={"test": "value"}, # Unsupported parameter
)
)
assert len(w) >= 4
warning_texts = [str(warning.message) for warning in w]
fields = [
"checkpoint_dir",
"hyperparam_search_config",
"logger_config",
"TrainingConfig",
"DataConfig",
"OptimizerConfig",
"max_steps_per_epoch",
"gradient_accumulation_steps",
"max_validation_steps",
"dtype",
# required unsupported parameters
"rank",
"apply_lora_to_output",
"lora_attn_modules",
"apply_lora_to_mlp",
]
for field in fields:
assert any(field in text for text in warning_texts)
if __name__ == "__main__":
unittest.main()