llama-stack/distributions/tgi/gpu/compose.yaml
Xi Yan 23210e8679
llama stack distributions / templates / docker refactor (#266)
* docker compose ollama

* comment

* update compose file

* readme for distributions

* readme

* move distribution folders

* move distribution/templates to distributions/

* rename

* kill distribution/templates

* readme

* readme

* build/developer cookbook/new api provider

* developer cookbook

* readme

* readme

* [bugfix] fix case for agent when memory bank registered without specifying provider_id (#264)

* fix case where memory bank is registered without provider_id

* memory test

* agents unit test

* Add an option to not use elastic agents for meta-reference inference (#269)

* Allow overridding checkpoint_dir via config

* Small rename

* Make all methods `async def` again; add completion() for meta-reference (#270)

PR #201 had made several changes while trying to fix issues with getting the stream=False branches of inference and agents API working. As part of this, it made a change which was slightly gratuitous. Namely, making chat_completion() and brethren "def" instead of "async def".

The rationale was that this allowed the user (within llama-stack) of this to use it as:

```
async for chunk in api.chat_completion(params)
```

However, it causes unnecessary confusion for several folks. Given that clients (e.g., llama-stack-apps) anyway use the SDK methods (which are completely isolated) this choice was not ideal. Let's revert back so the call now looks like:

```
async for chunk in await api.chat_completion(params)
```

Bonus: Added a completion() implementation for the meta-reference provider. Technically should have been another PR :)

* Improve an important error message

* update ollama for llama-guard3

* Add vLLM inference provider for OpenAI compatible vLLM server (#178)

This PR adds vLLM inference provider for OpenAI compatible vLLM server.

* Create .readthedocs.yaml

Trying out readthedocs

* Update event_logger.py (#275)

spelling error

* vllm

* build templates

* delete templates

* tmp add back build to avoid merge conflicts

* vllm

* vllm

---------

Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
Co-authored-by: Ashwin Bharambe <ashwin@meta.com>
Co-authored-by: Yuan Tang <terrytangyuan@gmail.com>
Co-authored-by: raghotham <rsm@meta.com>
Co-authored-by: nehal-a2z <nehal@coderabbit.ai>
2024-10-21 11:17:53 -07:00

55 lines
1.8 KiB
YAML

services:
text-generation-inference:
image: ghcr.io/huggingface/text-generation-inference:latest
network_mode: "host"
volumes:
- $HOME/.cache/huggingface:/data
ports:
- "5009:5009"
devices:
- nvidia.com/gpu=all
environment:
- CUDA_VISIBLE_DEVICES=0
- HF_HOME=/data
- HF_DATASETS_CACHE=/data
- HF_MODULES_CACHE=/data
- HF_HUB_CACHE=/data
command: ["--dtype", "bfloat16", "--usage-stats", "on", "--sharded", "false", "--model-id", "meta-llama/Llama-3.1-8B-Instruct", "--port", "5009", "--cuda-memory-fraction", "0.3"]
deploy:
resources:
reservations:
devices:
- driver: nvidia
# that's the closest analogue to --gpus; provide
# an integer amount of devices or 'all'
count: 1
# Devices are reserved using a list of capabilities, making
# capabilities the only required field. A device MUST
# satisfy all the requested capabilities for a successful
# reservation.
capabilities: [gpu]
runtime: nvidia
healthcheck:
test: ["CMD", "curl", "-f", "http://text-generation-inference:5009/health"]
interval: 5s
timeout: 5s
retries: 30
llamastack:
depends_on:
text-generation-inference:
condition: service_healthy
image: llamastack/llamastack-local-cpu
network_mode: "host"
volumes:
- ~/.llama:/root/.llama
# Link to TGI run.yaml file
- ./run.yaml:/root/my-run.yaml
ports:
- "5000:5000"
# Hack: wait for TGI server to start before starting docker
entrypoint: bash -c "sleep 60; python -m llama_stack.distribution.server.server --yaml_config /root/my-run.yaml"
restart_policy:
condition: on-failure
delay: 3s
max_attempts: 5
window: 60s