forked from phoenix-oss/llama-stack-mirror
This PR makes several core changes to the developer experience surrounding Llama Stack. Background: PR #92 introduced the notion of "routing" to the Llama Stack. It introduces three object types: (1) models, (2) shields and (3) memory banks. Each of these objects can be associated with a distinct provider. So you can get model A to be inferenced locally while model B, C can be inference remotely (e.g.) However, this had a few drawbacks: you could not address the provider instances -- i.e., if you configured "meta-reference" with a given model, you could not assign an identifier to this instance which you could re-use later. the above meant that you could not register a "routing_key" (e.g. model) dynamically and say "please use this existing provider I have already configured" for a new model. the terms "routing_table" and "routing_key" were exposed directly to the user. in my view, this is way too much overhead for a new user (which almost everyone is.) people come to the stack wanting to do ML and encounter a completely unexpected term. What this PR does: This PR structures the run config with only a single prominent key: - providers Providers are instances of configured provider types. Here's an example which shows two instances of the remote::tgi provider which are serving two different models. providers: inference: - provider_id: foo provider_type: remote::tgi config: { ... } - provider_id: bar provider_type: remote::tgi config: { ... } Secondly, the PR adds dynamic registration of { models | shields | memory_banks } to the API surface. The distribution still acts like a "routing table" (as previously) except that it asks the backing providers for a listing of these objects. For example it asks a TGI or Ollama inference adapter what models it is serving. Only the models that are being actually served can be requested by the user for inference. Otherwise, the Stack server will throw an error. When dynamically registering these objects, you can use the provider IDs shown above. Info about providers can be obtained using the Api.inspect set of endpoints (/providers, /routes, etc.) The above examples shows the correspondence between inference providers and models registry items. Things work similarly for the safety <=> shields and memory <=> memory_banks pairs. Registry: This PR also makes it so that Providers need to implement additional methods for registering and listing objects. For example, each Inference provider is now expected to implement the ModelsProtocolPrivate protocol (naming is not great!) which consists of two methods register_model list_models The goal is to inform the provider that a certain model needs to be supported so the provider can make any relevant backend changes if needed (or throw an error if the model cannot be supported.) There are many other cleanups included some of which are detailed in a follow-up comment.
190 lines
6.5 KiB
Python
190 lines
6.5 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
import json
|
|
|
|
from typing import Any, Dict, List, Optional
|
|
|
|
import weaviate
|
|
import weaviate.classes as wvc
|
|
from numpy.typing import NDArray
|
|
from weaviate.classes.init import Auth
|
|
|
|
from llama_stack.apis.memory import * # noqa: F403
|
|
from llama_stack.distribution.request_headers import NeedsRequestProviderData
|
|
from llama_stack.providers.datatypes import MemoryBanksProtocolPrivate
|
|
from llama_stack.providers.utils.memory.vector_store import (
|
|
BankWithIndex,
|
|
EmbeddingIndex,
|
|
)
|
|
|
|
from .config import WeaviateConfig, WeaviateRequestProviderData
|
|
|
|
|
|
class WeaviateIndex(EmbeddingIndex):
|
|
def __init__(self, client: weaviate.Client, collection_name: str):
|
|
self.client = client
|
|
self.collection_name = collection_name
|
|
|
|
async def add_chunks(self, chunks: List[Chunk], embeddings: NDArray):
|
|
assert len(chunks) == len(
|
|
embeddings
|
|
), f"Chunk length {len(chunks)} does not match embedding length {len(embeddings)}"
|
|
|
|
data_objects = []
|
|
for i, chunk in enumerate(chunks):
|
|
data_objects.append(
|
|
wvc.data.DataObject(
|
|
properties={
|
|
"chunk_content": chunk.json(),
|
|
},
|
|
vector=embeddings[i].tolist(),
|
|
)
|
|
)
|
|
|
|
# Inserting chunks into a prespecified Weaviate collection
|
|
collection = self.client.collections.get(self.collection_name)
|
|
|
|
# TODO: make this async friendly
|
|
collection.data.insert_many(data_objects)
|
|
|
|
async def query(self, embedding: NDArray, k: int) -> QueryDocumentsResponse:
|
|
collection = self.client.collections.get(self.collection_name)
|
|
|
|
results = collection.query.near_vector(
|
|
near_vector=embedding.tolist(),
|
|
limit=k,
|
|
return_metadata=wvc.query.MetadataQuery(distance=True),
|
|
)
|
|
|
|
chunks = []
|
|
scores = []
|
|
for doc in results.objects:
|
|
chunk_json = doc.properties["chunk_content"]
|
|
try:
|
|
chunk_dict = json.loads(chunk_json)
|
|
chunk = Chunk(**chunk_dict)
|
|
except Exception:
|
|
import traceback
|
|
|
|
traceback.print_exc()
|
|
print(f"Failed to parse document: {chunk_json}")
|
|
continue
|
|
|
|
chunks.append(chunk)
|
|
scores.append(1.0 / doc.metadata.distance)
|
|
|
|
return QueryDocumentsResponse(chunks=chunks, scores=scores)
|
|
|
|
|
|
class WeaviateMemoryAdapter(
|
|
Memory, NeedsRequestProviderData, MemoryBanksProtocolPrivate
|
|
):
|
|
def __init__(self, config: WeaviateConfig) -> None:
|
|
self.config = config
|
|
self.client_cache = {}
|
|
self.cache = {}
|
|
|
|
def _get_client(self) -> weaviate.Client:
|
|
provider_data = self.get_request_provider_data()
|
|
assert provider_data is not None, "Request provider data must be set"
|
|
assert isinstance(provider_data, WeaviateRequestProviderData)
|
|
|
|
key = f"{provider_data.weaviate_cluster_url}::{provider_data.weaviate_api_key}"
|
|
if key in self.client_cache:
|
|
return self.client_cache[key]
|
|
|
|
client = weaviate.connect_to_weaviate_cloud(
|
|
cluster_url=provider_data.weaviate_cluster_url,
|
|
auth_credentials=Auth.api_key(provider_data.weaviate_api_key),
|
|
)
|
|
self.client_cache[key] = client
|
|
return client
|
|
|
|
async def initialize(self) -> None:
|
|
pass
|
|
|
|
async def shutdown(self) -> None:
|
|
for client in self.client_cache.values():
|
|
client.close()
|
|
|
|
async def register_memory_bank(
|
|
self,
|
|
memory_bank: MemoryBankDef,
|
|
) -> None:
|
|
assert (
|
|
memory_bank.type == MemoryBankType.vector.value
|
|
), f"Only vector banks are supported {memory_bank.type}"
|
|
|
|
client = self._get_client()
|
|
|
|
# Create collection if it doesn't exist
|
|
if not client.collections.exists(memory_bank.identifier):
|
|
client.collections.create(
|
|
name=memory_bank.identifier,
|
|
vectorizer_config=wvc.config.Configure.Vectorizer.none(),
|
|
properties=[
|
|
wvc.config.Property(
|
|
name="chunk_content",
|
|
data_type=wvc.config.DataType.TEXT,
|
|
),
|
|
],
|
|
)
|
|
|
|
index = BankWithIndex(
|
|
bank=memory_bank,
|
|
index=WeaviateIndex(client=client, collection_name=memory_bank.identifier),
|
|
)
|
|
self.cache[memory_bank.identifier] = index
|
|
|
|
async def list_memory_banks(self) -> List[MemoryBankDef]:
|
|
# TODO: right now the Llama Stack is the source of truth for these banks. That is
|
|
# not ideal. It should be Weaviate which is the source of truth. Unfortunately,
|
|
# list() happens at Stack startup when the Weaviate client (credentials) is not
|
|
# yet available. We need to figure out a way to make this work.
|
|
return [i.bank for i in self.cache.values()]
|
|
|
|
async def _get_and_cache_bank_index(self, bank_id: str) -> Optional[BankWithIndex]:
|
|
if bank_id in self.cache:
|
|
return self.cache[bank_id]
|
|
|
|
bank = await self.memory_bank_store.get_memory_bank(bank_id)
|
|
if not bank:
|
|
raise ValueError(f"Bank {bank_id} not found")
|
|
|
|
client = self._get_client()
|
|
if not client.collections.exists(bank_id):
|
|
raise ValueError(f"Collection with name `{bank_id}` not found")
|
|
|
|
index = BankWithIndex(
|
|
bank=bank,
|
|
index=WeaviateIndex(client=client, collection_name=bank_id),
|
|
)
|
|
self.cache[bank_id] = index
|
|
return index
|
|
|
|
async def insert_documents(
|
|
self,
|
|
bank_id: str,
|
|
documents: List[MemoryBankDocument],
|
|
ttl_seconds: Optional[int] = None,
|
|
) -> None:
|
|
index = await self._get_and_cache_bank_index(bank_id)
|
|
if not index:
|
|
raise ValueError(f"Bank {bank_id} not found")
|
|
|
|
await index.insert_documents(documents)
|
|
|
|
async def query_documents(
|
|
self,
|
|
bank_id: str,
|
|
query: InterleavedTextMedia,
|
|
params: Optional[Dict[str, Any]] = None,
|
|
) -> QueryDocumentsResponse:
|
|
index = await self._get_and_cache_bank_index(bank_id)
|
|
if not index:
|
|
raise ValueError(f"Bank {bank_id} not found")
|
|
|
|
return await index.query_documents(query, params)
|