llama-stack/llama_stack/providers/impls/meta_reference/safety/llama_guard.py

268 lines
8.9 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import re
from string import Template
from typing import List, Optional
from llama_models.llama3.api.datatypes import * # noqa: F403
from llama_stack.apis.inference import * # noqa: F403
from .base import CANNED_RESPONSE_TEXT, OnViolationAction, ShieldBase, ShieldResponse
SAFE_RESPONSE = "safe"
_INSTANCE = None
CAT_VIOLENT_CRIMES = "Violent Crimes"
CAT_NON_VIOLENT_CRIMES = "Non-Violent Crimes"
CAT_SEX_CRIMES = "Sex Crimes"
CAT_CHILD_EXPLOITATION = "Child Exploitation"
CAT_DEFAMATION = "Defamation"
CAT_SPECIALIZED_ADVICE = "Specialized Advice"
CAT_PRIVACY = "Privacy"
CAT_INTELLECTUAL_PROPERTY = "Intellectual Property"
CAT_INDISCRIMINATE_WEAPONS = "Indiscriminate Weapons"
CAT_HATE = "Hate"
CAT_SELF_HARM = "Self-Harm"
CAT_SEXUAL_CONTENT = "Sexual Content"
CAT_ELECTIONS = "Elections"
CAT_CODE_INTERPRETER_ABUSE = "Code Interpreter Abuse"
SAFETY_CATEGORIES_TO_CODE_MAP = {
CAT_VIOLENT_CRIMES: "S1",
CAT_NON_VIOLENT_CRIMES: "S2",
CAT_SEX_CRIMES: "S3",
CAT_CHILD_EXPLOITATION: "S4",
CAT_DEFAMATION: "S5",
CAT_SPECIALIZED_ADVICE: "S6",
CAT_PRIVACY: "S7",
CAT_INTELLECTUAL_PROPERTY: "S8",
CAT_INDISCRIMINATE_WEAPONS: "S9",
CAT_HATE: "S10",
CAT_SELF_HARM: "S11",
CAT_SEXUAL_CONTENT: "S12",
CAT_ELECTIONS: "S13",
CAT_CODE_INTERPRETER_ABUSE: "S14",
}
DEFAULT_LG_V3_SAFETY_CATEGORIES = [
CAT_VIOLENT_CRIMES,
CAT_NON_VIOLENT_CRIMES,
CAT_SEX_CRIMES,
CAT_CHILD_EXPLOITATION,
CAT_DEFAMATION,
CAT_SPECIALIZED_ADVICE,
CAT_PRIVACY,
CAT_INTELLECTUAL_PROPERTY,
CAT_INDISCRIMINATE_WEAPONS,
CAT_HATE,
CAT_SELF_HARM,
CAT_SEXUAL_CONTENT,
CAT_ELECTIONS,
]
MODEL_TO_SAFETY_CATEGORIES_MAP = {
CoreModelId.llama_guard_3_8b.value: (
DEFAULT_LG_V3_SAFETY_CATEGORIES + [CAT_CODE_INTERPRETER_ABUSE]
),
CoreModelId.llama_guard_3_1b.value: DEFAULT_LG_V3_SAFETY_CATEGORIES,
CoreModelId.llama_guard_3_11b_vision.value: DEFAULT_LG_V3_SAFETY_CATEGORIES,
}
PROMPT_TASK = "Task: Check if there is unsafe content in '$agent_type' messages in conversations according our safety policy with the below categories."
SAFETY_CATEGORIES = """
<BEGIN UNSAFE CONTENT CATEGORIES>
$categories
<END UNSAFE CONTENT CATEGORIES>
"""
PROMPT_CONVERSATION = """
<BEGIN CONVERSATION>
$conversations
<END CONVERSATION>
"""
PROMPT_INSTRUCTIONS = """
Provide your safety assessment for ONLY THE LAST $agent_type message in the above conversation:
- First line must read 'safe' or 'unsafe'.
- If unsafe, a second line must include a comma-separated list of violated categories."""
PROMPT_TEMPLATE = Template(
f"{PROMPT_TASK}{SAFETY_CATEGORIES}{PROMPT_CONVERSATION}{PROMPT_INSTRUCTIONS}"
)
class LlamaGuardShield(ShieldBase):
def __init__(
self,
model: str,
inference_api: Inference,
excluded_categories: List[str] = None,
on_violation_action: OnViolationAction = OnViolationAction.RAISE,
):
super().__init__(on_violation_action)
if excluded_categories is None:
excluded_categories = []
assert len(excluded_categories) == 0 or all(
x in SAFETY_CATEGORIES_TO_CODE_MAP.values() for x in excluded_categories
), "Invalid categories in excluded categories. Expected format is ['S1', 'S2', ..]"
if model not in MODEL_TO_SAFETY_CATEGORIES_MAP:
raise ValueError(f"Unsupported model: {model}")
self.model = model
self.inference_api = inference_api
self.excluded_categories = excluded_categories
def check_unsafe_response(self, response: str) -> Optional[str]:
match = re.match(r"^unsafe\n(.*)$", response)
if match:
# extracts the unsafe code
extracted = match.group(1)
return extracted
return None
def get_safety_categories(self) -> List[str]:
excluded_categories = self.excluded_categories
if set(excluded_categories) == set(SAFETY_CATEGORIES_TO_CODE_MAP.values()):
excluded_categories = []
final_categories = []
all_categories = MODEL_TO_SAFETY_CATEGORIES_MAP[self.model]
for cat in all_categories:
cat_code = SAFETY_CATEGORIES_TO_CODE_MAP[cat]
if cat_code in excluded_categories:
continue
final_categories.append(f"{cat_code}: {cat}.")
return final_categories
def validate_messages(self, messages: List[Message]) -> None:
if len(messages) == 0:
raise ValueError("Messages must not be empty")
if messages[0].role != Role.user.value:
raise ValueError("Messages must start with user")
if len(messages) >= 2 and (
messages[0].role == Role.user.value and messages[1].role == Role.user.value
):
messages = messages[1:]
for i in range(1, len(messages)):
if messages[i].role == messages[i - 1].role:
raise ValueError(
f"Messages must alternate between user and assistant. Message {i} has the same role as message {i - 1}"
)
return messages
async def run(self, messages: List[Message]) -> ShieldResponse:
messages = self.validate_messages(messages)
if self.model == CoreModelId.llama_guard_3_11b_vision.value:
shield_input_message = self.build_vision_shield_input(messages)
else:
shield_input_message = self.build_text_shield_input(messages)
# TODO: llama-stack inference protocol has issues with non-streaming inference code
content = ""
async for chunk in self.inference_api.chat_completion(
model=self.model,
messages=[shield_input_message],
stream=True,
):
event = chunk.event
if event.event_type == ChatCompletionResponseEventType.progress:
assert isinstance(event.delta, str)
content += event.delta
content = content.strip()
shield_response = self.get_shield_response(content)
return shield_response
def build_text_shield_input(self, messages: List[Message]) -> UserMessage:
return UserMessage(content=self.build_prompt(messages))
def build_vision_shield_input(self, messages: List[Message]) -> UserMessage:
conversation = []
most_recent_img = None
for m in messages[::-1]:
if isinstance(m.content, str):
conversation.append(m)
elif isinstance(m.content, ImageMedia):
if most_recent_img is None and m.role == Role.user.value:
most_recent_img = m.content
conversation.append(m)
elif isinstance(m.content, list):
content = []
for c in m.content:
if isinstance(c, str):
content.append(c)
elif isinstance(c, ImageMedia):
if most_recent_img is None and m.role == Role.user.value:
most_recent_img = c
content.append(c)
else:
raise ValueError(f"Unknown content type: {c}")
conversation.append(UserMessage(content=content))
else:
raise ValueError(f"Unknown content type: {m.content}")
prompt = []
if most_recent_img is not None:
prompt.append(most_recent_img)
prompt.append(self.build_prompt(conversation[::-1]))
return UserMessage(content=prompt)
def build_prompt(self, messages: List[Message]) -> str:
categories = self.get_safety_categories()
categories_str = "\n".join(categories)
conversations_str = "\n\n".join(
[
f"{m.role.capitalize()}: {interleaved_text_media_as_str(m.content)}"
for m in messages
]
)
return PROMPT_TEMPLATE.substitute(
agent_type=messages[-1].role.capitalize(),
categories=categories_str,
conversations=conversations_str,
)
def get_shield_response(self, response: str) -> ShieldResponse:
response = response.strip()
if response == SAFE_RESPONSE:
return ShieldResponse(is_violation=False)
unsafe_code = self.check_unsafe_response(response)
if unsafe_code:
unsafe_code_list = unsafe_code.split(",")
if set(unsafe_code_list).issubset(set(self.excluded_categories)):
return ShieldResponse(is_violation=False)
return ShieldResponse(
is_violation=True,
violation_type=unsafe_code,
violation_return_message=CANNED_RESPONSE_TEXT,
)
raise ValueError(f"Unexpected response: {response}")