forked from phoenix-oss/llama-stack-mirror
# What does this PR do? This stubs in some OpenAI server-side compatibility with three new endpoints: /v1/openai/v1/models /v1/openai/v1/completions /v1/openai/v1/chat/completions This gives common inference apps using OpenAI clients the ability to talk to Llama Stack using an endpoint like http://localhost:8321/v1/openai/v1 . The two "v1" instances in there isn't awesome, but the thinking is that Llama Stack's API is v1 and then our OpenAI compatibility layer is compatible with OpenAI V1. And, some OpenAI clients implicitly assume the URL ends with "v1", so this gives maximum compatibility. The openai models endpoint is implemented in the routing layer, and just returns all the models Llama Stack knows about. The following providers should be working with the new OpenAI completions and chat/completions API: * remote::anthropic (untested) * remote::cerebras-openai-compat (untested) * remote::fireworks (tested) * remote::fireworks-openai-compat (untested) * remote::gemini (untested) * remote::groq-openai-compat (untested) * remote::nvidia (tested) * remote::ollama (tested) * remote::openai (untested) * remote::passthrough (untested) * remote::sambanova-openai-compat (untested) * remote::together (tested) * remote::together-openai-compat (untested) * remote::vllm (tested) The goal to support this for every inference provider - proxying directly to the provider's OpenAI endpoint for OpenAI-compatible providers. For providers that don't have an OpenAI-compatible API, we'll add a mixin to translate incoming OpenAI requests to Llama Stack inference requests and translate the Llama Stack inference responses to OpenAI responses. This is related to #1817 but is a bit larger in scope than just chat completions, as I have real use-cases that need the older completions API as well. ## Test Plan ### vLLM ``` VLLM_URL="http://localhost:8000/v1" INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" llama stack build --template remote-vllm --image-type venv --run LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "meta-llama/Llama-3.2-3B-Instruct" ``` ### ollama ``` INFERENCE_MODEL="llama3.2:3b-instruct-q8_0" llama stack build --template ollama --image-type venv --run LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="llama3.2:3b-instruct-q8_0" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "llama3.2:3b-instruct-q8_0" ``` ## Documentation Run a Llama Stack distribution that uses one of the providers mentioned in the list above. Then, use your favorite OpenAI client to send completion or chat completion requests with the base_url set to http://localhost:8321/v1/openai/v1 . Replace "localhost:8321" with the host and port of your Llama Stack server, if different. --------- Signed-off-by: Ben Browning <bbrownin@redhat.com>
833 lines
30 KiB
Python
833 lines
30 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import time
|
|
from typing import Any, AsyncGenerator, AsyncIterator, Dict, List, Optional, Union
|
|
|
|
from llama_stack.apis.common.content_types import (
|
|
URL,
|
|
InterleavedContent,
|
|
InterleavedContentItem,
|
|
)
|
|
from llama_stack.apis.common.responses import PaginatedResponse
|
|
from llama_stack.apis.datasetio import DatasetIO
|
|
from llama_stack.apis.datasets import DatasetPurpose, DataSource
|
|
from llama_stack.apis.eval import BenchmarkConfig, Eval, EvaluateResponse, Job
|
|
from llama_stack.apis.inference import (
|
|
ChatCompletionResponse,
|
|
ChatCompletionResponseEventType,
|
|
ChatCompletionResponseStreamChunk,
|
|
CompletionMessage,
|
|
EmbeddingsResponse,
|
|
EmbeddingTaskType,
|
|
Inference,
|
|
LogProbConfig,
|
|
Message,
|
|
ResponseFormat,
|
|
SamplingParams,
|
|
StopReason,
|
|
TextTruncation,
|
|
ToolChoice,
|
|
ToolConfig,
|
|
ToolDefinition,
|
|
ToolPromptFormat,
|
|
)
|
|
from llama_stack.apis.inference.inference import OpenAIChatCompletion, OpenAICompletion, OpenAIMessageParam
|
|
from llama_stack.apis.models import Model, ModelType
|
|
from llama_stack.apis.safety import RunShieldResponse, Safety
|
|
from llama_stack.apis.scoring import (
|
|
ScoreBatchResponse,
|
|
ScoreResponse,
|
|
Scoring,
|
|
ScoringFnParams,
|
|
)
|
|
from llama_stack.apis.shields import Shield
|
|
from llama_stack.apis.telemetry import MetricEvent, MetricInResponse, Telemetry
|
|
from llama_stack.apis.tools import (
|
|
ListToolDefsResponse,
|
|
RAGDocument,
|
|
RAGQueryConfig,
|
|
RAGQueryResult,
|
|
RAGToolRuntime,
|
|
ToolRuntime,
|
|
)
|
|
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO
|
|
from llama_stack.log import get_logger
|
|
from llama_stack.models.llama.llama3.chat_format import ChatFormat
|
|
from llama_stack.models.llama.llama3.tokenizer import Tokenizer
|
|
from llama_stack.providers.datatypes import RoutingTable
|
|
from llama_stack.providers.utils.telemetry.tracing import get_current_span
|
|
|
|
logger = get_logger(name=__name__, category="core")
|
|
|
|
|
|
class VectorIORouter(VectorIO):
|
|
"""Routes to an provider based on the vector db identifier"""
|
|
|
|
def __init__(
|
|
self,
|
|
routing_table: RoutingTable,
|
|
) -> None:
|
|
logger.debug("Initializing VectorIORouter")
|
|
self.routing_table = routing_table
|
|
|
|
async def initialize(self) -> None:
|
|
logger.debug("VectorIORouter.initialize")
|
|
pass
|
|
|
|
async def shutdown(self) -> None:
|
|
logger.debug("VectorIORouter.shutdown")
|
|
pass
|
|
|
|
async def register_vector_db(
|
|
self,
|
|
vector_db_id: str,
|
|
embedding_model: str,
|
|
embedding_dimension: Optional[int] = 384,
|
|
provider_id: Optional[str] = None,
|
|
provider_vector_db_id: Optional[str] = None,
|
|
) -> None:
|
|
logger.debug(f"VectorIORouter.register_vector_db: {vector_db_id}, {embedding_model}")
|
|
await self.routing_table.register_vector_db(
|
|
vector_db_id,
|
|
embedding_model,
|
|
embedding_dimension,
|
|
provider_id,
|
|
provider_vector_db_id,
|
|
)
|
|
|
|
async def insert_chunks(
|
|
self,
|
|
vector_db_id: str,
|
|
chunks: List[Chunk],
|
|
ttl_seconds: Optional[int] = None,
|
|
) -> None:
|
|
logger.debug(
|
|
f"VectorIORouter.insert_chunks: {vector_db_id}, {len(chunks)} chunks, ttl_seconds={ttl_seconds}, chunk_ids={[chunk.metadata['document_id'] for chunk in chunks[:3]]}{' and more...' if len(chunks) > 3 else ''}",
|
|
)
|
|
return await self.routing_table.get_provider_impl(vector_db_id).insert_chunks(vector_db_id, chunks, ttl_seconds)
|
|
|
|
async def query_chunks(
|
|
self,
|
|
vector_db_id: str,
|
|
query: InterleavedContent,
|
|
params: Optional[Dict[str, Any]] = None,
|
|
) -> QueryChunksResponse:
|
|
logger.debug(f"VectorIORouter.query_chunks: {vector_db_id}")
|
|
return await self.routing_table.get_provider_impl(vector_db_id).query_chunks(vector_db_id, query, params)
|
|
|
|
|
|
class InferenceRouter(Inference):
|
|
"""Routes to an provider based on the model"""
|
|
|
|
def __init__(
|
|
self,
|
|
routing_table: RoutingTable,
|
|
telemetry: Optional[Telemetry] = None,
|
|
) -> None:
|
|
logger.debug("Initializing InferenceRouter")
|
|
self.routing_table = routing_table
|
|
self.telemetry = telemetry
|
|
if self.telemetry:
|
|
self.tokenizer = Tokenizer.get_instance()
|
|
self.formatter = ChatFormat(self.tokenizer)
|
|
|
|
async def initialize(self) -> None:
|
|
logger.debug("InferenceRouter.initialize")
|
|
pass
|
|
|
|
async def shutdown(self) -> None:
|
|
logger.debug("InferenceRouter.shutdown")
|
|
pass
|
|
|
|
async def register_model(
|
|
self,
|
|
model_id: str,
|
|
provider_model_id: Optional[str] = None,
|
|
provider_id: Optional[str] = None,
|
|
metadata: Optional[Dict[str, Any]] = None,
|
|
model_type: Optional[ModelType] = None,
|
|
) -> None:
|
|
logger.debug(
|
|
f"InferenceRouter.register_model: {model_id=} {provider_model_id=} {provider_id=} {metadata=} {model_type=}",
|
|
)
|
|
await self.routing_table.register_model(model_id, provider_model_id, provider_id, metadata, model_type)
|
|
|
|
def _construct_metrics(
|
|
self,
|
|
prompt_tokens: int,
|
|
completion_tokens: int,
|
|
total_tokens: int,
|
|
model: Model,
|
|
) -> List[MetricEvent]:
|
|
"""Constructs a list of MetricEvent objects containing token usage metrics.
|
|
|
|
Args:
|
|
prompt_tokens: Number of tokens in the prompt
|
|
completion_tokens: Number of tokens in the completion
|
|
total_tokens: Total number of tokens used
|
|
model: Model object containing model_id and provider_id
|
|
|
|
Returns:
|
|
List of MetricEvent objects with token usage metrics
|
|
"""
|
|
span = get_current_span()
|
|
if span is None:
|
|
logger.warning("No span found for token usage metrics")
|
|
return []
|
|
metrics = [
|
|
("prompt_tokens", prompt_tokens),
|
|
("completion_tokens", completion_tokens),
|
|
("total_tokens", total_tokens),
|
|
]
|
|
metric_events = []
|
|
for metric_name, value in metrics:
|
|
metric_events.append(
|
|
MetricEvent(
|
|
trace_id=span.trace_id,
|
|
span_id=span.span_id,
|
|
metric=metric_name,
|
|
value=value,
|
|
timestamp=time.time(),
|
|
unit="tokens",
|
|
attributes={
|
|
"model_id": model.model_id,
|
|
"provider_id": model.provider_id,
|
|
},
|
|
)
|
|
)
|
|
return metric_events
|
|
|
|
async def _compute_and_log_token_usage(
|
|
self,
|
|
prompt_tokens: int,
|
|
completion_tokens: int,
|
|
total_tokens: int,
|
|
model: Model,
|
|
) -> List[MetricInResponse]:
|
|
metrics = self._construct_metrics(prompt_tokens, completion_tokens, total_tokens, model)
|
|
if self.telemetry:
|
|
for metric in metrics:
|
|
await self.telemetry.log_event(metric)
|
|
return [MetricInResponse(metric=metric.metric, value=metric.value) for metric in metrics]
|
|
|
|
async def _count_tokens(
|
|
self,
|
|
messages: List[Message] | InterleavedContent,
|
|
tool_prompt_format: Optional[ToolPromptFormat] = None,
|
|
) -> Optional[int]:
|
|
if isinstance(messages, list):
|
|
encoded = self.formatter.encode_dialog_prompt(messages, tool_prompt_format)
|
|
else:
|
|
encoded = self.formatter.encode_content(messages)
|
|
return len(encoded.tokens) if encoded and encoded.tokens else 0
|
|
|
|
async def chat_completion(
|
|
self,
|
|
model_id: str,
|
|
messages: List[Message],
|
|
sampling_params: Optional[SamplingParams] = None,
|
|
response_format: Optional[ResponseFormat] = None,
|
|
tools: Optional[List[ToolDefinition]] = None,
|
|
tool_choice: Optional[ToolChoice] = None,
|
|
tool_prompt_format: Optional[ToolPromptFormat] = None,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
tool_config: Optional[ToolConfig] = None,
|
|
) -> Union[ChatCompletionResponse, AsyncIterator[ChatCompletionResponseStreamChunk]]:
|
|
logger.debug(
|
|
f"InferenceRouter.chat_completion: {model_id=}, {stream=}, {messages=}, {tools=}, {tool_config=}, {response_format=}",
|
|
)
|
|
if sampling_params is None:
|
|
sampling_params = SamplingParams()
|
|
model = await self.routing_table.get_model(model_id)
|
|
if model is None:
|
|
raise ValueError(f"Model '{model_id}' not found")
|
|
if model.model_type == ModelType.embedding:
|
|
raise ValueError(f"Model '{model_id}' is an embedding model and does not support chat completions")
|
|
if tool_config:
|
|
if tool_choice and tool_choice != tool_config.tool_choice:
|
|
raise ValueError("tool_choice and tool_config.tool_choice must match")
|
|
if tool_prompt_format and tool_prompt_format != tool_config.tool_prompt_format:
|
|
raise ValueError("tool_prompt_format and tool_config.tool_prompt_format must match")
|
|
else:
|
|
params = {}
|
|
if tool_choice:
|
|
params["tool_choice"] = tool_choice
|
|
if tool_prompt_format:
|
|
params["tool_prompt_format"] = tool_prompt_format
|
|
tool_config = ToolConfig(**params)
|
|
|
|
tools = tools or []
|
|
if tool_config.tool_choice == ToolChoice.none:
|
|
tools = []
|
|
elif tool_config.tool_choice == ToolChoice.auto:
|
|
pass
|
|
elif tool_config.tool_choice == ToolChoice.required:
|
|
pass
|
|
else:
|
|
# verify tool_choice is one of the tools
|
|
tool_names = [t.tool_name if isinstance(t.tool_name, str) else t.tool_name.value for t in tools]
|
|
if tool_config.tool_choice not in tool_names:
|
|
raise ValueError(f"Tool choice {tool_config.tool_choice} is not one of the tools: {tool_names}")
|
|
|
|
params = dict(
|
|
model_id=model_id,
|
|
messages=messages,
|
|
sampling_params=sampling_params,
|
|
tools=tools,
|
|
tool_choice=tool_choice,
|
|
tool_prompt_format=tool_prompt_format,
|
|
response_format=response_format,
|
|
stream=stream,
|
|
logprobs=logprobs,
|
|
tool_config=tool_config,
|
|
)
|
|
provider = self.routing_table.get_provider_impl(model_id)
|
|
prompt_tokens = await self._count_tokens(messages, tool_config.tool_prompt_format)
|
|
|
|
if stream:
|
|
|
|
async def stream_generator():
|
|
completion_text = ""
|
|
async for chunk in await provider.chat_completion(**params):
|
|
if chunk.event.event_type == ChatCompletionResponseEventType.progress:
|
|
if chunk.event.delta.type == "text":
|
|
completion_text += chunk.event.delta.text
|
|
if chunk.event.event_type == ChatCompletionResponseEventType.complete:
|
|
completion_tokens = await self._count_tokens(
|
|
[
|
|
CompletionMessage(
|
|
content=completion_text,
|
|
stop_reason=StopReason.end_of_turn,
|
|
)
|
|
],
|
|
tool_config.tool_prompt_format,
|
|
)
|
|
total_tokens = (prompt_tokens or 0) + (completion_tokens or 0)
|
|
metrics = await self._compute_and_log_token_usage(
|
|
prompt_tokens or 0,
|
|
completion_tokens or 0,
|
|
total_tokens,
|
|
model,
|
|
)
|
|
chunk.metrics = metrics if chunk.metrics is None else chunk.metrics + metrics
|
|
yield chunk
|
|
|
|
return stream_generator()
|
|
else:
|
|
response = await provider.chat_completion(**params)
|
|
completion_tokens = await self._count_tokens(
|
|
[response.completion_message],
|
|
tool_config.tool_prompt_format,
|
|
)
|
|
total_tokens = (prompt_tokens or 0) + (completion_tokens or 0)
|
|
metrics = await self._compute_and_log_token_usage(
|
|
prompt_tokens or 0,
|
|
completion_tokens or 0,
|
|
total_tokens,
|
|
model,
|
|
)
|
|
response.metrics = metrics if response.metrics is None else response.metrics + metrics
|
|
return response
|
|
|
|
async def completion(
|
|
self,
|
|
model_id: str,
|
|
content: InterleavedContent,
|
|
sampling_params: Optional[SamplingParams] = None,
|
|
response_format: Optional[ResponseFormat] = None,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
) -> AsyncGenerator:
|
|
if sampling_params is None:
|
|
sampling_params = SamplingParams()
|
|
logger.debug(
|
|
f"InferenceRouter.completion: {model_id=}, {stream=}, {content=}, {sampling_params=}, {response_format=}",
|
|
)
|
|
model = await self.routing_table.get_model(model_id)
|
|
if model is None:
|
|
raise ValueError(f"Model '{model_id}' not found")
|
|
if model.model_type == ModelType.embedding:
|
|
raise ValueError(f"Model '{model_id}' is an embedding model and does not support chat completions")
|
|
provider = self.routing_table.get_provider_impl(model_id)
|
|
params = dict(
|
|
model_id=model_id,
|
|
content=content,
|
|
sampling_params=sampling_params,
|
|
response_format=response_format,
|
|
stream=stream,
|
|
logprobs=logprobs,
|
|
)
|
|
|
|
prompt_tokens = await self._count_tokens(content)
|
|
|
|
if stream:
|
|
|
|
async def stream_generator():
|
|
completion_text = ""
|
|
async for chunk in await provider.completion(**params):
|
|
if hasattr(chunk, "delta"):
|
|
completion_text += chunk.delta
|
|
if hasattr(chunk, "stop_reason") and chunk.stop_reason and self.telemetry:
|
|
completion_tokens = await self._count_tokens(completion_text)
|
|
total_tokens = (prompt_tokens or 0) + (completion_tokens or 0)
|
|
metrics = await self._compute_and_log_token_usage(
|
|
prompt_tokens or 0,
|
|
completion_tokens or 0,
|
|
total_tokens,
|
|
model,
|
|
)
|
|
chunk.metrics = metrics if chunk.metrics is None else chunk.metrics + metrics
|
|
yield chunk
|
|
|
|
return stream_generator()
|
|
else:
|
|
response = await provider.completion(**params)
|
|
completion_tokens = await self._count_tokens(response.content)
|
|
total_tokens = (prompt_tokens or 0) + (completion_tokens or 0)
|
|
metrics = await self._compute_and_log_token_usage(
|
|
prompt_tokens or 0,
|
|
completion_tokens or 0,
|
|
total_tokens,
|
|
model,
|
|
)
|
|
response.metrics = metrics if response.metrics is None else response.metrics + metrics
|
|
return response
|
|
|
|
async def embeddings(
|
|
self,
|
|
model_id: str,
|
|
contents: List[str] | List[InterleavedContentItem],
|
|
text_truncation: Optional[TextTruncation] = TextTruncation.none,
|
|
output_dimension: Optional[int] = None,
|
|
task_type: Optional[EmbeddingTaskType] = None,
|
|
) -> EmbeddingsResponse:
|
|
logger.debug(f"InferenceRouter.embeddings: {model_id}")
|
|
model = await self.routing_table.get_model(model_id)
|
|
if model is None:
|
|
raise ValueError(f"Model '{model_id}' not found")
|
|
if model.model_type == ModelType.llm:
|
|
raise ValueError(f"Model '{model_id}' is an LLM model and does not support embeddings")
|
|
return await self.routing_table.get_provider_impl(model_id).embeddings(
|
|
model_id=model_id,
|
|
contents=contents,
|
|
text_truncation=text_truncation,
|
|
output_dimension=output_dimension,
|
|
task_type=task_type,
|
|
)
|
|
|
|
async def openai_completion(
|
|
self,
|
|
model: str,
|
|
prompt: Union[str, List[str], List[int], List[List[int]]],
|
|
best_of: Optional[int] = None,
|
|
echo: Optional[bool] = None,
|
|
frequency_penalty: Optional[float] = None,
|
|
logit_bias: Optional[Dict[str, float]] = None,
|
|
logprobs: Optional[bool] = None,
|
|
max_tokens: Optional[int] = None,
|
|
n: Optional[int] = None,
|
|
presence_penalty: Optional[float] = None,
|
|
seed: Optional[int] = None,
|
|
stop: Optional[Union[str, List[str]]] = None,
|
|
stream: Optional[bool] = None,
|
|
stream_options: Optional[Dict[str, Any]] = None,
|
|
temperature: Optional[float] = None,
|
|
top_p: Optional[float] = None,
|
|
user: Optional[str] = None,
|
|
guided_choice: Optional[List[str]] = None,
|
|
prompt_logprobs: Optional[int] = None,
|
|
) -> OpenAICompletion:
|
|
logger.debug(
|
|
f"InferenceRouter.openai_completion: {model=}, {stream=}, {prompt=}",
|
|
)
|
|
model_obj = await self.routing_table.get_model(model)
|
|
if model_obj is None:
|
|
raise ValueError(f"Model '{model}' not found")
|
|
if model_obj.model_type == ModelType.embedding:
|
|
raise ValueError(f"Model '{model}' is an embedding model and does not support completions")
|
|
|
|
params = dict(
|
|
model=model_obj.identifier,
|
|
prompt=prompt,
|
|
best_of=best_of,
|
|
echo=echo,
|
|
frequency_penalty=frequency_penalty,
|
|
logit_bias=logit_bias,
|
|
logprobs=logprobs,
|
|
max_tokens=max_tokens,
|
|
n=n,
|
|
presence_penalty=presence_penalty,
|
|
seed=seed,
|
|
stop=stop,
|
|
stream=stream,
|
|
stream_options=stream_options,
|
|
temperature=temperature,
|
|
top_p=top_p,
|
|
user=user,
|
|
guided_choice=guided_choice,
|
|
prompt_logprobs=prompt_logprobs,
|
|
)
|
|
|
|
provider = self.routing_table.get_provider_impl(model_obj.identifier)
|
|
return await provider.openai_completion(**params)
|
|
|
|
async def openai_chat_completion(
|
|
self,
|
|
model: str,
|
|
messages: List[OpenAIMessageParam],
|
|
frequency_penalty: Optional[float] = None,
|
|
function_call: Optional[Union[str, Dict[str, Any]]] = None,
|
|
functions: Optional[List[Dict[str, Any]]] = None,
|
|
logit_bias: Optional[Dict[str, float]] = None,
|
|
logprobs: Optional[bool] = None,
|
|
max_completion_tokens: Optional[int] = None,
|
|
max_tokens: Optional[int] = None,
|
|
n: Optional[int] = None,
|
|
parallel_tool_calls: Optional[bool] = None,
|
|
presence_penalty: Optional[float] = None,
|
|
response_format: Optional[Dict[str, str]] = None,
|
|
seed: Optional[int] = None,
|
|
stop: Optional[Union[str, List[str]]] = None,
|
|
stream: Optional[bool] = None,
|
|
stream_options: Optional[Dict[str, Any]] = None,
|
|
temperature: Optional[float] = None,
|
|
tool_choice: Optional[Union[str, Dict[str, Any]]] = None,
|
|
tools: Optional[List[Dict[str, Any]]] = None,
|
|
top_logprobs: Optional[int] = None,
|
|
top_p: Optional[float] = None,
|
|
user: Optional[str] = None,
|
|
) -> OpenAIChatCompletion:
|
|
logger.debug(
|
|
f"InferenceRouter.openai_chat_completion: {model=}, {stream=}, {messages=}",
|
|
)
|
|
model_obj = await self.routing_table.get_model(model)
|
|
if model_obj is None:
|
|
raise ValueError(f"Model '{model}' not found")
|
|
if model_obj.model_type == ModelType.embedding:
|
|
raise ValueError(f"Model '{model}' is an embedding model and does not support chat completions")
|
|
|
|
params = dict(
|
|
model=model_obj.identifier,
|
|
messages=messages,
|
|
frequency_penalty=frequency_penalty,
|
|
function_call=function_call,
|
|
functions=functions,
|
|
logit_bias=logit_bias,
|
|
logprobs=logprobs,
|
|
max_completion_tokens=max_completion_tokens,
|
|
max_tokens=max_tokens,
|
|
n=n,
|
|
parallel_tool_calls=parallel_tool_calls,
|
|
presence_penalty=presence_penalty,
|
|
response_format=response_format,
|
|
seed=seed,
|
|
stop=stop,
|
|
stream=stream,
|
|
stream_options=stream_options,
|
|
temperature=temperature,
|
|
tool_choice=tool_choice,
|
|
tools=tools,
|
|
top_logprobs=top_logprobs,
|
|
top_p=top_p,
|
|
user=user,
|
|
)
|
|
|
|
provider = self.routing_table.get_provider_impl(model_obj.identifier)
|
|
return await provider.openai_chat_completion(**params)
|
|
|
|
|
|
class SafetyRouter(Safety):
|
|
def __init__(
|
|
self,
|
|
routing_table: RoutingTable,
|
|
) -> None:
|
|
logger.debug("Initializing SafetyRouter")
|
|
self.routing_table = routing_table
|
|
|
|
async def initialize(self) -> None:
|
|
logger.debug("SafetyRouter.initialize")
|
|
pass
|
|
|
|
async def shutdown(self) -> None:
|
|
logger.debug("SafetyRouter.shutdown")
|
|
pass
|
|
|
|
async def register_shield(
|
|
self,
|
|
shield_id: str,
|
|
provider_shield_id: Optional[str] = None,
|
|
provider_id: Optional[str] = None,
|
|
params: Optional[Dict[str, Any]] = None,
|
|
) -> Shield:
|
|
logger.debug(f"SafetyRouter.register_shield: {shield_id}")
|
|
return await self.routing_table.register_shield(shield_id, provider_shield_id, provider_id, params)
|
|
|
|
async def run_shield(
|
|
self,
|
|
shield_id: str,
|
|
messages: List[Message],
|
|
params: Dict[str, Any] = None,
|
|
) -> RunShieldResponse:
|
|
logger.debug(f"SafetyRouter.run_shield: {shield_id}")
|
|
return await self.routing_table.get_provider_impl(shield_id).run_shield(
|
|
shield_id=shield_id,
|
|
messages=messages,
|
|
params=params,
|
|
)
|
|
|
|
|
|
class DatasetIORouter(DatasetIO):
|
|
def __init__(
|
|
self,
|
|
routing_table: RoutingTable,
|
|
) -> None:
|
|
logger.debug("Initializing DatasetIORouter")
|
|
self.routing_table = routing_table
|
|
|
|
async def initialize(self) -> None:
|
|
logger.debug("DatasetIORouter.initialize")
|
|
pass
|
|
|
|
async def shutdown(self) -> None:
|
|
logger.debug("DatasetIORouter.shutdown")
|
|
pass
|
|
|
|
async def register_dataset(
|
|
self,
|
|
purpose: DatasetPurpose,
|
|
source: DataSource,
|
|
metadata: Optional[Dict[str, Any]] = None,
|
|
dataset_id: Optional[str] = None,
|
|
) -> None:
|
|
logger.debug(
|
|
f"DatasetIORouter.register_dataset: {purpose=} {source=} {metadata=} {dataset_id=}",
|
|
)
|
|
await self.routing_table.register_dataset(
|
|
purpose=purpose,
|
|
source=source,
|
|
metadata=metadata,
|
|
dataset_id=dataset_id,
|
|
)
|
|
|
|
async def iterrows(
|
|
self,
|
|
dataset_id: str,
|
|
start_index: Optional[int] = None,
|
|
limit: Optional[int] = None,
|
|
) -> PaginatedResponse:
|
|
logger.debug(
|
|
f"DatasetIORouter.iterrows: {dataset_id}, {start_index=} {limit=}",
|
|
)
|
|
return await self.routing_table.get_provider_impl(dataset_id).iterrows(
|
|
dataset_id=dataset_id,
|
|
start_index=start_index,
|
|
limit=limit,
|
|
)
|
|
|
|
async def append_rows(self, dataset_id: str, rows: List[Dict[str, Any]]) -> None:
|
|
logger.debug(f"DatasetIORouter.append_rows: {dataset_id}, {len(rows)} rows")
|
|
return await self.routing_table.get_provider_impl(dataset_id).append_rows(
|
|
dataset_id=dataset_id,
|
|
rows=rows,
|
|
)
|
|
|
|
|
|
class ScoringRouter(Scoring):
|
|
def __init__(
|
|
self,
|
|
routing_table: RoutingTable,
|
|
) -> None:
|
|
logger.debug("Initializing ScoringRouter")
|
|
self.routing_table = routing_table
|
|
|
|
async def initialize(self) -> None:
|
|
logger.debug("ScoringRouter.initialize")
|
|
pass
|
|
|
|
async def shutdown(self) -> None:
|
|
logger.debug("ScoringRouter.shutdown")
|
|
pass
|
|
|
|
async def score_batch(
|
|
self,
|
|
dataset_id: str,
|
|
scoring_functions: Dict[str, Optional[ScoringFnParams]] = None,
|
|
save_results_dataset: bool = False,
|
|
) -> ScoreBatchResponse:
|
|
logger.debug(f"ScoringRouter.score_batch: {dataset_id}")
|
|
res = {}
|
|
for fn_identifier in scoring_functions.keys():
|
|
score_response = await self.routing_table.get_provider_impl(fn_identifier).score_batch(
|
|
dataset_id=dataset_id,
|
|
scoring_functions={fn_identifier: scoring_functions[fn_identifier]},
|
|
)
|
|
res.update(score_response.results)
|
|
|
|
if save_results_dataset:
|
|
raise NotImplementedError("Save results dataset not implemented yet")
|
|
|
|
return ScoreBatchResponse(
|
|
results=res,
|
|
)
|
|
|
|
async def score(
|
|
self,
|
|
input_rows: List[Dict[str, Any]],
|
|
scoring_functions: Dict[str, Optional[ScoringFnParams]] = None,
|
|
) -> ScoreResponse:
|
|
logger.debug(f"ScoringRouter.score: {len(input_rows)} rows, {len(scoring_functions)} functions")
|
|
res = {}
|
|
# look up and map each scoring function to its provider impl
|
|
for fn_identifier in scoring_functions.keys():
|
|
score_response = await self.routing_table.get_provider_impl(fn_identifier).score(
|
|
input_rows=input_rows,
|
|
scoring_functions={fn_identifier: scoring_functions[fn_identifier]},
|
|
)
|
|
res.update(score_response.results)
|
|
|
|
return ScoreResponse(results=res)
|
|
|
|
|
|
class EvalRouter(Eval):
|
|
def __init__(
|
|
self,
|
|
routing_table: RoutingTable,
|
|
) -> None:
|
|
logger.debug("Initializing EvalRouter")
|
|
self.routing_table = routing_table
|
|
|
|
async def initialize(self) -> None:
|
|
logger.debug("EvalRouter.initialize")
|
|
pass
|
|
|
|
async def shutdown(self) -> None:
|
|
logger.debug("EvalRouter.shutdown")
|
|
pass
|
|
|
|
async def run_eval(
|
|
self,
|
|
benchmark_id: str,
|
|
benchmark_config: BenchmarkConfig,
|
|
) -> Job:
|
|
logger.debug(f"EvalRouter.run_eval: {benchmark_id}")
|
|
return await self.routing_table.get_provider_impl(benchmark_id).run_eval(
|
|
benchmark_id=benchmark_id,
|
|
benchmark_config=benchmark_config,
|
|
)
|
|
|
|
async def evaluate_rows(
|
|
self,
|
|
benchmark_id: str,
|
|
input_rows: List[Dict[str, Any]],
|
|
scoring_functions: List[str],
|
|
benchmark_config: BenchmarkConfig,
|
|
) -> EvaluateResponse:
|
|
logger.debug(f"EvalRouter.evaluate_rows: {benchmark_id}, {len(input_rows)} rows")
|
|
return await self.routing_table.get_provider_impl(benchmark_id).evaluate_rows(
|
|
benchmark_id=benchmark_id,
|
|
input_rows=input_rows,
|
|
scoring_functions=scoring_functions,
|
|
benchmark_config=benchmark_config,
|
|
)
|
|
|
|
async def job_status(
|
|
self,
|
|
benchmark_id: str,
|
|
job_id: str,
|
|
) -> Job:
|
|
logger.debug(f"EvalRouter.job_status: {benchmark_id}, {job_id}")
|
|
return await self.routing_table.get_provider_impl(benchmark_id).job_status(benchmark_id, job_id)
|
|
|
|
async def job_cancel(
|
|
self,
|
|
benchmark_id: str,
|
|
job_id: str,
|
|
) -> None:
|
|
logger.debug(f"EvalRouter.job_cancel: {benchmark_id}, {job_id}")
|
|
await self.routing_table.get_provider_impl(benchmark_id).job_cancel(
|
|
benchmark_id,
|
|
job_id,
|
|
)
|
|
|
|
async def job_result(
|
|
self,
|
|
benchmark_id: str,
|
|
job_id: str,
|
|
) -> EvaluateResponse:
|
|
logger.debug(f"EvalRouter.job_result: {benchmark_id}, {job_id}")
|
|
return await self.routing_table.get_provider_impl(benchmark_id).job_result(
|
|
benchmark_id,
|
|
job_id,
|
|
)
|
|
|
|
|
|
class ToolRuntimeRouter(ToolRuntime):
|
|
class RagToolImpl(RAGToolRuntime):
|
|
def __init__(
|
|
self,
|
|
routing_table: RoutingTable,
|
|
) -> None:
|
|
logger.debug("Initializing ToolRuntimeRouter.RagToolImpl")
|
|
self.routing_table = routing_table
|
|
|
|
async def query(
|
|
self,
|
|
content: InterleavedContent,
|
|
vector_db_ids: List[str],
|
|
query_config: Optional[RAGQueryConfig] = None,
|
|
) -> RAGQueryResult:
|
|
logger.debug(f"ToolRuntimeRouter.RagToolImpl.query: {vector_db_ids}")
|
|
return await self.routing_table.get_provider_impl("knowledge_search").query(
|
|
content, vector_db_ids, query_config
|
|
)
|
|
|
|
async def insert(
|
|
self,
|
|
documents: List[RAGDocument],
|
|
vector_db_id: str,
|
|
chunk_size_in_tokens: int = 512,
|
|
) -> None:
|
|
logger.debug(
|
|
f"ToolRuntimeRouter.RagToolImpl.insert: {vector_db_id}, {len(documents)} documents, chunk_size={chunk_size_in_tokens}"
|
|
)
|
|
return await self.routing_table.get_provider_impl("insert_into_memory").insert(
|
|
documents, vector_db_id, chunk_size_in_tokens
|
|
)
|
|
|
|
def __init__(
|
|
self,
|
|
routing_table: RoutingTable,
|
|
) -> None:
|
|
logger.debug("Initializing ToolRuntimeRouter")
|
|
self.routing_table = routing_table
|
|
|
|
# HACK ALERT this should be in sync with "get_all_api_endpoints()"
|
|
self.rag_tool = self.RagToolImpl(routing_table)
|
|
for method in ("query", "insert"):
|
|
setattr(self, f"rag_tool.{method}", getattr(self.rag_tool, method))
|
|
|
|
async def initialize(self) -> None:
|
|
logger.debug("ToolRuntimeRouter.initialize")
|
|
pass
|
|
|
|
async def shutdown(self) -> None:
|
|
logger.debug("ToolRuntimeRouter.shutdown")
|
|
pass
|
|
|
|
async def invoke_tool(self, tool_name: str, kwargs: Dict[str, Any]) -> Any:
|
|
logger.debug(f"ToolRuntimeRouter.invoke_tool: {tool_name}")
|
|
return await self.routing_table.get_provider_impl(tool_name).invoke_tool(
|
|
tool_name=tool_name,
|
|
kwargs=kwargs,
|
|
)
|
|
|
|
async def list_runtime_tools(
|
|
self, tool_group_id: Optional[str] = None, mcp_endpoint: Optional[URL] = None
|
|
) -> ListToolDefsResponse:
|
|
logger.debug(f"ToolRuntimeRouter.list_runtime_tools: {tool_group_id}")
|
|
return await self.routing_table.get_provider_impl(tool_group_id).list_tools(tool_group_id, mcp_endpoint)
|