forked from phoenix-oss/llama-stack-mirror
# What does this PR do? This stubs in some OpenAI server-side compatibility with three new endpoints: /v1/openai/v1/models /v1/openai/v1/completions /v1/openai/v1/chat/completions This gives common inference apps using OpenAI clients the ability to talk to Llama Stack using an endpoint like http://localhost:8321/v1/openai/v1 . The two "v1" instances in there isn't awesome, but the thinking is that Llama Stack's API is v1 and then our OpenAI compatibility layer is compatible with OpenAI V1. And, some OpenAI clients implicitly assume the URL ends with "v1", so this gives maximum compatibility. The openai models endpoint is implemented in the routing layer, and just returns all the models Llama Stack knows about. The following providers should be working with the new OpenAI completions and chat/completions API: * remote::anthropic (untested) * remote::cerebras-openai-compat (untested) * remote::fireworks (tested) * remote::fireworks-openai-compat (untested) * remote::gemini (untested) * remote::groq-openai-compat (untested) * remote::nvidia (tested) * remote::ollama (tested) * remote::openai (untested) * remote::passthrough (untested) * remote::sambanova-openai-compat (untested) * remote::together (tested) * remote::together-openai-compat (untested) * remote::vllm (tested) The goal to support this for every inference provider - proxying directly to the provider's OpenAI endpoint for OpenAI-compatible providers. For providers that don't have an OpenAI-compatible API, we'll add a mixin to translate incoming OpenAI requests to Llama Stack inference requests and translate the Llama Stack inference responses to OpenAI responses. This is related to #1817 but is a bit larger in scope than just chat completions, as I have real use-cases that need the older completions API as well. ## Test Plan ### vLLM ``` VLLM_URL="http://localhost:8000/v1" INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" llama stack build --template remote-vllm --image-type venv --run LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "meta-llama/Llama-3.2-3B-Instruct" ``` ### ollama ``` INFERENCE_MODEL="llama3.2:3b-instruct-q8_0" llama stack build --template ollama --image-type venv --run LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="llama3.2:3b-instruct-q8_0" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "llama3.2:3b-instruct-q8_0" ``` ## Documentation Run a Llama Stack distribution that uses one of the providers mentioned in the list above. Then, use your favorite OpenAI client to send completion or chat completion requests with the base_url set to http://localhost:8321/v1/openai/v1 . Replace "localhost:8321" with the host and port of your Llama Stack server, if different. --------- Signed-off-by: Ben Browning <bbrownin@redhat.com>
199 lines
7 KiB
Python
199 lines
7 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import json
|
|
from typing import AsyncGenerator, AsyncIterator, Dict, List, Optional, Union
|
|
|
|
from botocore.client import BaseClient
|
|
|
|
from llama_stack.apis.common.content_types import (
|
|
InterleavedContent,
|
|
InterleavedContentItem,
|
|
)
|
|
from llama_stack.apis.inference import (
|
|
ChatCompletionRequest,
|
|
ChatCompletionResponse,
|
|
ChatCompletionResponseStreamChunk,
|
|
EmbeddingsResponse,
|
|
EmbeddingTaskType,
|
|
Inference,
|
|
LogProbConfig,
|
|
Message,
|
|
ResponseFormat,
|
|
SamplingParams,
|
|
TextTruncation,
|
|
ToolChoice,
|
|
ToolConfig,
|
|
ToolDefinition,
|
|
ToolPromptFormat,
|
|
)
|
|
from llama_stack.providers.remote.inference.bedrock.config import BedrockConfig
|
|
from llama_stack.providers.utils.bedrock.client import create_bedrock_client
|
|
from llama_stack.providers.utils.inference.model_registry import (
|
|
ModelRegistryHelper,
|
|
)
|
|
from llama_stack.providers.utils.inference.openai_compat import (
|
|
OpenAIChatCompletionUnsupportedMixin,
|
|
OpenAICompatCompletionChoice,
|
|
OpenAICompatCompletionResponse,
|
|
OpenAICompletionUnsupportedMixin,
|
|
get_sampling_strategy_options,
|
|
process_chat_completion_response,
|
|
process_chat_completion_stream_response,
|
|
)
|
|
from llama_stack.providers.utils.inference.prompt_adapter import (
|
|
chat_completion_request_to_prompt,
|
|
content_has_media,
|
|
interleaved_content_as_str,
|
|
)
|
|
|
|
from .models import MODEL_ENTRIES
|
|
|
|
|
|
class BedrockInferenceAdapter(
|
|
ModelRegistryHelper,
|
|
Inference,
|
|
OpenAIChatCompletionUnsupportedMixin,
|
|
OpenAICompletionUnsupportedMixin,
|
|
):
|
|
def __init__(self, config: BedrockConfig) -> None:
|
|
ModelRegistryHelper.__init__(self, MODEL_ENTRIES)
|
|
self._config = config
|
|
|
|
self._client = create_bedrock_client(config)
|
|
|
|
@property
|
|
def client(self) -> BaseClient:
|
|
return self._client
|
|
|
|
async def initialize(self) -> None:
|
|
pass
|
|
|
|
async def shutdown(self) -> None:
|
|
self.client.close()
|
|
|
|
async def completion(
|
|
self,
|
|
model_id: str,
|
|
content: InterleavedContent,
|
|
sampling_params: Optional[SamplingParams] = None,
|
|
response_format: Optional[ResponseFormat] = None,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
) -> AsyncGenerator:
|
|
raise NotImplementedError()
|
|
|
|
async def chat_completion(
|
|
self,
|
|
model_id: str,
|
|
messages: List[Message],
|
|
sampling_params: Optional[SamplingParams] = None,
|
|
response_format: Optional[ResponseFormat] = None,
|
|
tools: Optional[List[ToolDefinition]] = None,
|
|
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
|
tool_prompt_format: Optional[ToolPromptFormat] = None,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
tool_config: Optional[ToolConfig] = None,
|
|
) -> Union[ChatCompletionResponse, AsyncIterator[ChatCompletionResponseStreamChunk]]:
|
|
if sampling_params is None:
|
|
sampling_params = SamplingParams()
|
|
model = await self.model_store.get_model(model_id)
|
|
request = ChatCompletionRequest(
|
|
model=model.provider_resource_id,
|
|
messages=messages,
|
|
sampling_params=sampling_params,
|
|
tools=tools or [],
|
|
response_format=response_format,
|
|
stream=stream,
|
|
logprobs=logprobs,
|
|
tool_config=tool_config,
|
|
)
|
|
|
|
if stream:
|
|
return self._stream_chat_completion(request)
|
|
else:
|
|
return await self._nonstream_chat_completion(request)
|
|
|
|
async def _nonstream_chat_completion(self, request: ChatCompletionRequest) -> ChatCompletionResponse:
|
|
params = await self._get_params_for_chat_completion(request)
|
|
res = self.client.invoke_model(**params)
|
|
chunk = next(res["body"])
|
|
result = json.loads(chunk.decode("utf-8"))
|
|
|
|
choice = OpenAICompatCompletionChoice(
|
|
finish_reason=result["stop_reason"],
|
|
text=result["generation"],
|
|
)
|
|
|
|
response = OpenAICompatCompletionResponse(choices=[choice])
|
|
return process_chat_completion_response(response, request)
|
|
|
|
async def _stream_chat_completion(self, request: ChatCompletionRequest) -> AsyncGenerator:
|
|
params = await self._get_params_for_chat_completion(request)
|
|
res = self.client.invoke_model_with_response_stream(**params)
|
|
event_stream = res["body"]
|
|
|
|
async def _generate_and_convert_to_openai_compat():
|
|
for chunk in event_stream:
|
|
chunk = chunk["chunk"]["bytes"]
|
|
result = json.loads(chunk.decode("utf-8"))
|
|
choice = OpenAICompatCompletionChoice(
|
|
finish_reason=result["stop_reason"],
|
|
text=result["generation"],
|
|
)
|
|
yield OpenAICompatCompletionResponse(choices=[choice])
|
|
|
|
stream = _generate_and_convert_to_openai_compat()
|
|
async for chunk in process_chat_completion_stream_response(stream, request):
|
|
yield chunk
|
|
|
|
async def _get_params_for_chat_completion(self, request: ChatCompletionRequest) -> Dict:
|
|
bedrock_model = request.model
|
|
|
|
sampling_params = request.sampling_params
|
|
options = get_sampling_strategy_options(sampling_params)
|
|
|
|
if sampling_params.max_tokens:
|
|
options["max_gen_len"] = sampling_params.max_tokens
|
|
if sampling_params.repetition_penalty > 0:
|
|
options["repetition_penalty"] = sampling_params.repetition_penalty
|
|
|
|
prompt = await chat_completion_request_to_prompt(request, self.get_llama_model(request.model))
|
|
return {
|
|
"modelId": bedrock_model,
|
|
"body": json.dumps(
|
|
{
|
|
"prompt": prompt,
|
|
**options,
|
|
}
|
|
),
|
|
}
|
|
|
|
async def embeddings(
|
|
self,
|
|
model_id: str,
|
|
contents: List[str] | List[InterleavedContentItem],
|
|
text_truncation: Optional[TextTruncation] = TextTruncation.none,
|
|
output_dimension: Optional[int] = None,
|
|
task_type: Optional[EmbeddingTaskType] = None,
|
|
) -> EmbeddingsResponse:
|
|
model = await self.model_store.get_model(model_id)
|
|
embeddings = []
|
|
for content in contents:
|
|
assert not content_has_media(content), "Bedrock does not support media for embeddings"
|
|
input_text = interleaved_content_as_str(content)
|
|
input_body = {"inputText": input_text}
|
|
body = json.dumps(input_body)
|
|
response = self.client.invoke_model(
|
|
body=body,
|
|
modelId=model.provider_resource_id,
|
|
accept="application/json",
|
|
contentType="application/json",
|
|
)
|
|
response_body = json.loads(response.get("body").read())
|
|
embeddings.append(response_body.get("embedding"))
|
|
return EmbeddingsResponse(embeddings=embeddings)
|