llama-stack/llama_stack/providers/remote/inference/vllm/vllm.py
Ben Browning 2b2db5fbda
feat: OpenAI-Compatible models, completions, chat/completions (#1894)
# What does this PR do?

This stubs in some OpenAI server-side compatibility with three new
endpoints:

/v1/openai/v1/models
/v1/openai/v1/completions
/v1/openai/v1/chat/completions

This gives common inference apps using OpenAI clients the ability to
talk to Llama Stack using an endpoint like
http://localhost:8321/v1/openai/v1 .

The two "v1" instances in there isn't awesome, but the thinking is that
Llama Stack's API is v1 and then our OpenAI compatibility layer is
compatible with OpenAI V1. And, some OpenAI clients implicitly assume
the URL ends with "v1", so this gives maximum compatibility.

The openai models endpoint is implemented in the routing layer, and just
returns all the models Llama Stack knows about.

The following providers should be working with the new OpenAI
completions and chat/completions API:
* remote::anthropic (untested)
* remote::cerebras-openai-compat (untested)
* remote::fireworks (tested)
* remote::fireworks-openai-compat (untested)
* remote::gemini (untested)
* remote::groq-openai-compat (untested)
* remote::nvidia (tested)
* remote::ollama (tested)
* remote::openai (untested)
* remote::passthrough (untested)
* remote::sambanova-openai-compat (untested)
* remote::together (tested)
* remote::together-openai-compat (untested)
* remote::vllm (tested)

The goal to support this for every inference provider - proxying
directly to the provider's OpenAI endpoint for OpenAI-compatible
providers. For providers that don't have an OpenAI-compatible API, we'll
add a mixin to translate incoming OpenAI requests to Llama Stack
inference requests and translate the Llama Stack inference responses to
OpenAI responses.

This is related to #1817 but is a bit larger in scope than just chat
completions, as I have real use-cases that need the older completions
API as well.

## Test Plan

### vLLM

```
VLLM_URL="http://localhost:8000/v1" INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" llama stack build --template remote-vllm --image-type venv --run

LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "meta-llama/Llama-3.2-3B-Instruct"
```

### ollama
```
INFERENCE_MODEL="llama3.2:3b-instruct-q8_0" llama stack build --template ollama --image-type venv --run

LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="llama3.2:3b-instruct-q8_0" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "llama3.2:3b-instruct-q8_0"
```



## Documentation

Run a Llama Stack distribution that uses one of the providers mentioned
in the list above. Then, use your favorite OpenAI client to send
completion or chat completion requests with the base_url set to
http://localhost:8321/v1/openai/v1 . Replace "localhost:8321" with the
host and port of your Llama Stack server, if different.

---------

Signed-off-by: Ben Browning <bbrownin@redhat.com>
2025-04-11 13:14:17 -07:00

528 lines
20 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import json
import logging
from typing import Any, AsyncGenerator, Dict, List, Optional, Union
import httpx
from openai import AsyncOpenAI
from openai.types.chat.chat_completion_chunk import (
ChatCompletionChunk as OpenAIChatCompletionChunk,
)
from llama_stack.apis.common.content_types import (
InterleavedContent,
InterleavedContentItem,
TextDelta,
ToolCallDelta,
ToolCallParseStatus,
)
from llama_stack.apis.inference import (
ChatCompletionRequest,
ChatCompletionResponse,
ChatCompletionResponseEvent,
ChatCompletionResponseEventType,
ChatCompletionResponseStreamChunk,
CompletionMessage,
CompletionRequest,
CompletionResponse,
CompletionResponseStreamChunk,
EmbeddingsResponse,
EmbeddingTaskType,
GrammarResponseFormat,
Inference,
JsonSchemaResponseFormat,
LogProbConfig,
Message,
ResponseFormat,
SamplingParams,
TextTruncation,
ToolChoice,
ToolConfig,
ToolDefinition,
ToolPromptFormat,
)
from llama_stack.apis.inference.inference import OpenAIChatCompletion, OpenAICompletion, OpenAIMessageParam
from llama_stack.apis.models import Model, ModelType
from llama_stack.models.llama.datatypes import BuiltinTool, StopReason, ToolCall
from llama_stack.models.llama.sku_list import all_registered_models
from llama_stack.providers.datatypes import ModelsProtocolPrivate
from llama_stack.providers.utils.inference.model_registry import (
ModelRegistryHelper,
build_hf_repo_model_entry,
)
from llama_stack.providers.utils.inference.openai_compat import (
UnparseableToolCall,
convert_message_to_openai_dict,
convert_tool_call,
get_sampling_options,
prepare_openai_completion_params,
process_chat_completion_stream_response,
process_completion_response,
process_completion_stream_response,
)
from llama_stack.providers.utils.inference.prompt_adapter import (
completion_request_to_prompt,
content_has_media,
interleaved_content_as_str,
request_has_media,
)
from .config import VLLMInferenceAdapterConfig
log = logging.getLogger(__name__)
def build_hf_repo_model_entries():
return [
build_hf_repo_model_entry(
model.huggingface_repo,
model.descriptor(),
)
for model in all_registered_models()
if model.huggingface_repo
]
def _convert_to_vllm_tool_calls_in_response(
tool_calls,
) -> List[ToolCall]:
if not tool_calls:
return []
return [
ToolCall(
call_id=call.id,
tool_name=call.function.name,
arguments=json.loads(call.function.arguments),
arguments_json=call.function.arguments,
)
for call in tool_calls
]
def _convert_to_vllm_tools_in_request(tools: List[ToolDefinition]) -> List[dict]:
compat_tools = []
for tool in tools:
properties = {}
compat_required = []
if tool.parameters:
for tool_key, tool_param in tool.parameters.items():
properties[tool_key] = {"type": tool_param.param_type}
if tool_param.description:
properties[tool_key]["description"] = tool_param.description
if tool_param.default:
properties[tool_key]["default"] = tool_param.default
if tool_param.required:
compat_required.append(tool_key)
# The tool.tool_name can be a str or a BuiltinTool enum. If
# it's the latter, convert to a string.
tool_name = tool.tool_name
if isinstance(tool_name, BuiltinTool):
tool_name = tool_name.value
compat_tool = {
"type": "function",
"function": {
"name": tool_name,
"description": tool.description,
"parameters": {
"type": "object",
"properties": properties,
"required": compat_required,
},
},
}
compat_tools.append(compat_tool)
return compat_tools
def _convert_to_vllm_finish_reason(finish_reason: str) -> StopReason:
return {
"stop": StopReason.end_of_turn,
"length": StopReason.out_of_tokens,
"tool_calls": StopReason.end_of_message,
}.get(finish_reason, StopReason.end_of_turn)
async def _process_vllm_chat_completion_stream_response(
stream: AsyncGenerator[OpenAIChatCompletionChunk, None],
) -> AsyncGenerator:
event_type = ChatCompletionResponseEventType.start
tool_call_buf = UnparseableToolCall()
async for chunk in stream:
if not chunk.choices:
log.warning("vLLM failed to generation any completions - check the vLLM server logs for an error.")
continue
choice = chunk.choices[0]
if choice.finish_reason:
args_str = tool_call_buf.arguments
args = None
try:
args = {} if not args_str else json.loads(args_str)
except Exception as e:
log.warning(f"Failed to parse tool call buffer arguments: {args_str} \nError: {e}")
if args:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=event_type,
delta=ToolCallDelta(
tool_call=ToolCall(
call_id=tool_call_buf.call_id,
tool_name=tool_call_buf.tool_name,
arguments=args,
arguments_json=args_str,
),
parse_status=ToolCallParseStatus.succeeded,
),
)
)
elif args_str:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
tool_call=str(tool_call_buf),
parse_status=ToolCallParseStatus.failed,
),
)
)
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.complete,
delta=TextDelta(text=choice.delta.content or ""),
logprobs=None,
stop_reason=_convert_to_vllm_finish_reason(choice.finish_reason),
)
)
elif choice.delta.tool_calls:
tool_call = convert_tool_call(choice.delta.tool_calls[0])
tool_call_buf.tool_name += str(tool_call.tool_name)
tool_call_buf.call_id += tool_call.call_id
# TODO: remove str() when dict type for 'arguments' is no longer allowed
tool_call_buf.arguments += str(tool_call.arguments)
else:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=event_type,
delta=TextDelta(text=choice.delta.content or ""),
logprobs=None,
)
)
event_type = ChatCompletionResponseEventType.progress
class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
def __init__(self, config: VLLMInferenceAdapterConfig) -> None:
self.register_helper = ModelRegistryHelper(build_hf_repo_model_entries())
self.config = config
self.client = None
async def initialize(self) -> None:
log.info(f"Initializing VLLM client with base_url={self.config.url}")
self.client = AsyncOpenAI(
base_url=self.config.url,
api_key=self.config.api_token,
http_client=None if self.config.tls_verify else httpx.AsyncClient(verify=False),
)
async def shutdown(self) -> None:
pass
async def unregister_model(self, model_id: str) -> None:
pass
async def _get_model(self, model_id: str) -> Model:
if not self.model_store:
raise ValueError("Model store not set")
return await self.model_store.get_model(model_id)
async def completion(
self,
model_id: str,
content: InterleavedContent,
sampling_params: Optional[SamplingParams] = None,
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> CompletionResponse | AsyncGenerator[CompletionResponseStreamChunk, None]:
if sampling_params is None:
sampling_params = SamplingParams()
model = await self._get_model(model_id)
request = CompletionRequest(
model=model.provider_resource_id,
content=content,
sampling_params=sampling_params,
response_format=response_format,
stream=stream,
logprobs=logprobs,
)
if stream:
return self._stream_completion(request)
else:
return await self._nonstream_completion(request)
async def chat_completion(
self,
model_id: str,
messages: List[Message],
sampling_params: Optional[SamplingParams] = None,
tools: Optional[List[ToolDefinition]] = None,
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
tool_prompt_format: Optional[ToolPromptFormat] = None,
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
tool_config: Optional[ToolConfig] = None,
) -> ChatCompletionResponse | AsyncGenerator[ChatCompletionResponseStreamChunk, None]:
if sampling_params is None:
sampling_params = SamplingParams()
model = await self._get_model(model_id)
# This is to be consistent with OpenAI API and support vLLM <= v0.6.3
# References:
# * https://platform.openai.com/docs/api-reference/chat/create#chat-create-tool_choice
# * https://github.com/vllm-project/vllm/pull/10000
if not tools and tool_config is not None:
tool_config.tool_choice = ToolChoice.none
request = ChatCompletionRequest(
model=model.provider_resource_id,
messages=messages,
sampling_params=sampling_params,
tools=tools or [],
stream=stream,
logprobs=logprobs,
response_format=response_format,
tool_config=tool_config,
)
if stream:
return self._stream_chat_completion(request, self.client)
else:
return await self._nonstream_chat_completion(request, self.client)
async def _nonstream_chat_completion(
self, request: ChatCompletionRequest, client: AsyncOpenAI
) -> ChatCompletionResponse:
params = await self._get_params(request)
r = await client.chat.completions.create(**params)
choice = r.choices[0]
result = ChatCompletionResponse(
completion_message=CompletionMessage(
content=choice.message.content or "",
stop_reason=_convert_to_vllm_finish_reason(choice.finish_reason),
tool_calls=_convert_to_vllm_tool_calls_in_response(choice.message.tool_calls),
),
logprobs=None,
)
return result
async def _stream_chat_completion(
self, request: ChatCompletionRequest, client: AsyncOpenAI
) -> AsyncGenerator[ChatCompletionResponseStreamChunk, None]:
params = await self._get_params(request)
stream = await client.chat.completions.create(**params)
if request.tools:
res = _process_vllm_chat_completion_stream_response(stream)
else:
res = process_chat_completion_stream_response(stream, request)
async for chunk in res:
yield chunk
async def _nonstream_completion(self, request: CompletionRequest) -> CompletionResponse:
assert self.client is not None
params = await self._get_params(request)
r = await self.client.completions.create(**params)
return process_completion_response(r)
async def _stream_completion(
self, request: CompletionRequest
) -> AsyncGenerator[CompletionResponseStreamChunk, None]:
assert self.client is not None
params = await self._get_params(request)
stream = await self.client.completions.create(**params)
async for chunk in process_completion_stream_response(stream):
yield chunk
async def register_model(self, model: Model) -> Model:
assert self.client is not None
model = await self.register_helper.register_model(model)
res = await self.client.models.list()
available_models = [m.id async for m in res]
if model.provider_resource_id not in available_models:
raise ValueError(
f"Model {model.provider_resource_id} is not being served by vLLM. "
f"Available models: {', '.join(available_models)}"
)
return model
async def _get_params(self, request: Union[ChatCompletionRequest, CompletionRequest]) -> dict:
options = get_sampling_options(request.sampling_params)
if "max_tokens" not in options:
options["max_tokens"] = self.config.max_tokens
input_dict: dict[str, Any] = {}
if isinstance(request, ChatCompletionRequest) and request.tools is not None:
input_dict = {"tools": _convert_to_vllm_tools_in_request(request.tools)}
if isinstance(request, ChatCompletionRequest):
input_dict["messages"] = [await convert_message_to_openai_dict(m, download=True) for m in request.messages]
else:
assert not request_has_media(request), "vLLM does not support media for Completion requests"
input_dict["prompt"] = await completion_request_to_prompt(request)
if fmt := request.response_format:
if isinstance(fmt, JsonSchemaResponseFormat):
input_dict["extra_body"] = {"guided_json": fmt.json_schema}
elif isinstance(fmt, GrammarResponseFormat):
raise NotImplementedError("Grammar response format not supported yet")
else:
raise ValueError(f"Unknown response format {fmt.type}")
if request.logprobs and request.logprobs.top_k:
input_dict["logprobs"] = request.logprobs.top_k
return {
"model": request.model,
**input_dict,
"stream": request.stream,
**options,
}
async def embeddings(
self,
model_id: str,
contents: List[str] | List[InterleavedContentItem],
text_truncation: Optional[TextTruncation] = TextTruncation.none,
output_dimension: Optional[int] = None,
task_type: Optional[EmbeddingTaskType] = None,
) -> EmbeddingsResponse:
assert self.client is not None
model = await self._get_model(model_id)
kwargs = {}
assert model.model_type == ModelType.embedding
assert model.metadata.get("embedding_dimension")
kwargs["dimensions"] = model.metadata.get("embedding_dimension")
assert all(not content_has_media(content) for content in contents), "VLLM does not support media for embeddings"
response = await self.client.embeddings.create(
model=model.provider_resource_id,
input=[interleaved_content_as_str(content) for content in contents],
**kwargs,
)
embeddings = [data.embedding for data in response.data]
return EmbeddingsResponse(embeddings=embeddings)
async def openai_completion(
self,
model: str,
prompt: Union[str, List[str], List[int], List[List[int]]],
best_of: Optional[int] = None,
echo: Optional[bool] = None,
frequency_penalty: Optional[float] = None,
logit_bias: Optional[Dict[str, float]] = None,
logprobs: Optional[bool] = None,
max_tokens: Optional[int] = None,
n: Optional[int] = None,
presence_penalty: Optional[float] = None,
seed: Optional[int] = None,
stop: Optional[Union[str, List[str]]] = None,
stream: Optional[bool] = None,
stream_options: Optional[Dict[str, Any]] = None,
temperature: Optional[float] = None,
top_p: Optional[float] = None,
user: Optional[str] = None,
guided_choice: Optional[List[str]] = None,
prompt_logprobs: Optional[int] = None,
) -> OpenAICompletion:
model_obj = await self._get_model(model)
extra_body: Dict[str, Any] = {}
if prompt_logprobs is not None and prompt_logprobs >= 0:
extra_body["prompt_logprobs"] = prompt_logprobs
if guided_choice:
extra_body["guided_choice"] = guided_choice
params = await prepare_openai_completion_params(
model=model_obj.provider_resource_id,
prompt=prompt,
best_of=best_of,
echo=echo,
frequency_penalty=frequency_penalty,
logit_bias=logit_bias,
logprobs=logprobs,
max_tokens=max_tokens,
n=n,
presence_penalty=presence_penalty,
seed=seed,
stop=stop,
stream=stream,
stream_options=stream_options,
temperature=temperature,
top_p=top_p,
user=user,
extra_body=extra_body,
)
return await self.client.completions.create(**params) # type: ignore
async def openai_chat_completion(
self,
model: str,
messages: List[OpenAIMessageParam],
frequency_penalty: Optional[float] = None,
function_call: Optional[Union[str, Dict[str, Any]]] = None,
functions: Optional[List[Dict[str, Any]]] = None,
logit_bias: Optional[Dict[str, float]] = None,
logprobs: Optional[bool] = None,
max_completion_tokens: Optional[int] = None,
max_tokens: Optional[int] = None,
n: Optional[int] = None,
parallel_tool_calls: Optional[bool] = None,
presence_penalty: Optional[float] = None,
response_format: Optional[Dict[str, str]] = None,
seed: Optional[int] = None,
stop: Optional[Union[str, List[str]]] = None,
stream: Optional[bool] = None,
stream_options: Optional[Dict[str, Any]] = None,
temperature: Optional[float] = None,
tool_choice: Optional[Union[str, Dict[str, Any]]] = None,
tools: Optional[List[Dict[str, Any]]] = None,
top_logprobs: Optional[int] = None,
top_p: Optional[float] = None,
user: Optional[str] = None,
) -> OpenAIChatCompletion:
model_obj = await self._get_model(model)
params = await prepare_openai_completion_params(
model=model_obj.provider_resource_id,
messages=messages,
frequency_penalty=frequency_penalty,
function_call=function_call,
functions=functions,
logit_bias=logit_bias,
logprobs=logprobs,
max_completion_tokens=max_completion_tokens,
max_tokens=max_tokens,
n=n,
parallel_tool_calls=parallel_tool_calls,
presence_penalty=presence_penalty,
response_format=response_format,
seed=seed,
stop=stop,
stream=stream,
stream_options=stream_options,
temperature=temperature,
tool_choice=tool_choice,
tools=tools,
top_logprobs=top_logprobs,
top_p=top_p,
user=user,
)
return await self.client.chat.completions.create(**params) # type: ignore