forked from phoenix-oss/llama-stack-mirror
# What does this PR do? We have several places running tests for different purposes. - oss llama stack - provider tests - e2e tests - provider llama stack - unit tests - e2e tests It would be nice if they can *share the same set of test data*, so we maintain the consistency between spec and implementation. This is what this diff is about, isolating test data from test coding, so that we can reuse the same data at different places by writing different test coding. ## Test Plan == Set up Ollama local server == Run a provider test conda activate stack OLLAMA_URL="http://localhost:8321" \ pytest -v -s -k "ollama" --inference-model="llama3.2:3b-instruct-fp16" \ llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completion_structured_output // test_structured_output should also work == Run an e2e test conda activate sherpa with-proxy pip install llama-stack export INFERENCE_MODEL=llama3.2:3b-instruct-fp16 export LLAMA_STACK_PORT=8322 with-proxy llama stack build --template ollama with-proxy llama stack run --env OLLAMA_URL=http://localhost:8321 ollama - Run test client, LLAMA_STACK_PORT=8322 LLAMA_STACK_BASE_URL="http://localhost:8322" \ pytest -v -s --inference-model="llama3.2:3b-instruct-fp16" \ tests/client-sdk/inference/test_text_inference.py::test_text_completion_structured_output // test_text_chat_completion_structured_output should also work ## Notes - This PR was automatically generated by oss_sync - Please refer to D69478008 for more details.
402 lines
14 KiB
Python
402 lines
14 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
|
|
import pytest
|
|
from pydantic import BaseModel, TypeAdapter, ValidationError
|
|
|
|
from llama_stack.apis.common.content_types import ToolCallParseStatus
|
|
from llama_stack.apis.inference import (
|
|
ChatCompletionResponse,
|
|
ChatCompletionResponseEventType,
|
|
ChatCompletionResponseStreamChunk,
|
|
CompletionResponse,
|
|
CompletionResponseStreamChunk,
|
|
JsonSchemaResponseFormat,
|
|
LogProbConfig,
|
|
Message,
|
|
SystemMessage,
|
|
ToolChoice,
|
|
UserMessage,
|
|
)
|
|
from llama_stack.apis.models import ListModelsResponse, Model
|
|
from llama_stack.models.llama.datatypes import (
|
|
SamplingParams,
|
|
StopReason,
|
|
ToolCall,
|
|
ToolDefinition,
|
|
ToolParamDefinition,
|
|
ToolPromptFormat,
|
|
)
|
|
from llama_stack.providers.tests.test_cases.test_case import TestCase
|
|
|
|
from .utils import group_chunks
|
|
|
|
# How to run this test:
|
|
#
|
|
# pytest -v -s llama_stack/providers/tests/inference/test_text_inference.py
|
|
# -m "(fireworks or ollama) and llama_3b"
|
|
# --env FIREWORKS_API_KEY=<your_api_key>
|
|
|
|
|
|
def get_expected_stop_reason(model: str):
|
|
return StopReason.end_of_message if ("Llama3.1" in model or "Llama-3.1" in model) else StopReason.end_of_turn
|
|
|
|
|
|
@pytest.fixture
|
|
def common_params(inference_model):
|
|
return {
|
|
"tool_choice": ToolChoice.auto,
|
|
"tool_prompt_format": (
|
|
ToolPromptFormat.json
|
|
if ("Llama3.1" in inference_model or "Llama-3.1" in inference_model)
|
|
else ToolPromptFormat.python_list
|
|
),
|
|
}
|
|
|
|
|
|
@pytest.fixture
|
|
def sample_messages():
|
|
return [
|
|
SystemMessage(content="You are a helpful assistant."),
|
|
UserMessage(content="What's the weather like today?"),
|
|
]
|
|
|
|
|
|
@pytest.fixture
|
|
def sample_tool_definition():
|
|
return ToolDefinition(
|
|
tool_name="get_weather",
|
|
description="Get the current weather",
|
|
parameters={
|
|
"location": ToolParamDefinition(
|
|
param_type="string",
|
|
description="The city and state, e.g. San Francisco, CA",
|
|
),
|
|
},
|
|
)
|
|
|
|
|
|
class TestInference:
|
|
# Session scope for asyncio because the tests in this class all
|
|
# share the same provider instance.
|
|
@pytest.mark.asyncio(loop_scope="session")
|
|
async def test_model_list(self, inference_model, inference_stack):
|
|
_, models_impl = inference_stack
|
|
response = await models_impl.list_models()
|
|
assert isinstance(response, ListModelsResponse)
|
|
assert isinstance(response.data, list)
|
|
assert len(response.data) >= 1
|
|
assert all(isinstance(model, Model) for model in response.data)
|
|
|
|
model_def = None
|
|
for model in response.data:
|
|
if model.identifier == inference_model:
|
|
model_def = model
|
|
break
|
|
|
|
assert model_def is not None
|
|
|
|
@pytest.mark.asyncio(loop_scope="session")
|
|
async def test_completion(self, inference_model, inference_stack):
|
|
inference_impl, _ = inference_stack
|
|
|
|
response = await inference_impl.completion(
|
|
content="Micheael Jordan is born in ",
|
|
stream=False,
|
|
model_id=inference_model,
|
|
sampling_params=SamplingParams(
|
|
max_tokens=50,
|
|
),
|
|
)
|
|
|
|
assert isinstance(response, CompletionResponse)
|
|
assert "1963" in response.content
|
|
|
|
chunks = [
|
|
r
|
|
async for r in await inference_impl.completion(
|
|
content="Roses are red,",
|
|
stream=True,
|
|
model_id=inference_model,
|
|
sampling_params=SamplingParams(
|
|
max_tokens=50,
|
|
),
|
|
)
|
|
]
|
|
|
|
assert all(isinstance(chunk, CompletionResponseStreamChunk) for chunk in chunks)
|
|
assert len(chunks) >= 1
|
|
last = chunks[-1]
|
|
assert last.stop_reason == StopReason.out_of_tokens
|
|
|
|
@pytest.mark.asyncio(loop_scope="session")
|
|
async def test_completion_logprobs(self, inference_model, inference_stack):
|
|
inference_impl, _ = inference_stack
|
|
|
|
response = await inference_impl.completion(
|
|
content="Micheael Jordan is born in ",
|
|
stream=False,
|
|
model_id=inference_model,
|
|
sampling_params=SamplingParams(
|
|
max_tokens=5,
|
|
),
|
|
logprobs=LogProbConfig(
|
|
top_k=3,
|
|
),
|
|
)
|
|
|
|
assert isinstance(response, CompletionResponse)
|
|
assert 1 <= len(response.logprobs) <= 5
|
|
assert response.logprobs, "Logprobs should not be empty"
|
|
assert all(len(logprob.logprobs_by_token) == 3 for logprob in response.logprobs)
|
|
|
|
chunks = [
|
|
r
|
|
async for r in await inference_impl.completion(
|
|
content="Roses are red,",
|
|
stream=True,
|
|
model_id=inference_model,
|
|
sampling_params=SamplingParams(
|
|
max_tokens=5,
|
|
),
|
|
logprobs=LogProbConfig(
|
|
top_k=3,
|
|
),
|
|
)
|
|
]
|
|
|
|
assert all(isinstance(chunk, CompletionResponseStreamChunk) for chunk in chunks)
|
|
assert (
|
|
1 <= len(chunks) <= 6
|
|
) # why 6 and not 5? the response may have an extra closing chunk, e.g. for usage or stop_reason
|
|
for chunk in chunks:
|
|
if chunk.delta: # if there's a token, we expect logprobs
|
|
assert chunk.logprobs, "Logprobs should not be empty"
|
|
assert all(len(logprob.logprobs_by_token) == 3 for logprob in chunk.logprobs)
|
|
else: # no token, no logprobs
|
|
assert not chunk.logprobs, "Logprobs should be empty"
|
|
|
|
@pytest.mark.parametrize("test_case", ["completion-01"])
|
|
@pytest.mark.asyncio(loop_scope="session")
|
|
async def test_completion_structured_output(self, inference_model, inference_stack, test_case):
|
|
inference_impl, _ = inference_stack
|
|
|
|
class Output(BaseModel):
|
|
name: str
|
|
year_born: str
|
|
year_retired: str
|
|
|
|
tc = TestCase(test_case)
|
|
|
|
user_input = tc["user_input"]
|
|
response = await inference_impl.completion(
|
|
model_id=inference_model,
|
|
content=user_input,
|
|
stream=False,
|
|
sampling_params=SamplingParams(
|
|
max_tokens=50,
|
|
),
|
|
response_format=JsonSchemaResponseFormat(
|
|
json_schema=Output.model_json_schema(),
|
|
),
|
|
)
|
|
assert isinstance(response, CompletionResponse)
|
|
assert isinstance(response.content, str)
|
|
|
|
answer = Output.model_validate_json(response.content)
|
|
expected = tc["expected"]
|
|
assert answer.name == expected["name"]
|
|
assert answer.year_born == expected["year_born"]
|
|
assert answer.year_retired == expected["year_retired"]
|
|
|
|
@pytest.mark.asyncio(loop_scope="session")
|
|
async def test_chat_completion_non_streaming(
|
|
self, inference_model, inference_stack, common_params, sample_messages
|
|
):
|
|
inference_impl, _ = inference_stack
|
|
response = await inference_impl.chat_completion(
|
|
model_id=inference_model,
|
|
messages=sample_messages,
|
|
stream=False,
|
|
**common_params,
|
|
)
|
|
|
|
assert isinstance(response, ChatCompletionResponse)
|
|
assert response.completion_message.role == "assistant"
|
|
assert isinstance(response.completion_message.content, str)
|
|
assert len(response.completion_message.content) > 0
|
|
|
|
@pytest.mark.parametrize("test_case", ["chat_completion-01"])
|
|
@pytest.mark.asyncio(loop_scope="session")
|
|
async def test_structured_output(self, inference_model, inference_stack, common_params, test_case):
|
|
inference_impl, _ = inference_stack
|
|
|
|
class AnswerFormat(BaseModel):
|
|
first_name: str
|
|
last_name: str
|
|
year_of_birth: int
|
|
num_seasons_in_nba: int
|
|
|
|
tc = TestCase(test_case)
|
|
messages = [TypeAdapter(Message).validate_python(m) for m in tc["messages"]]
|
|
|
|
response = await inference_impl.chat_completion(
|
|
model_id=inference_model,
|
|
messages=messages,
|
|
stream=False,
|
|
response_format=JsonSchemaResponseFormat(
|
|
json_schema=AnswerFormat.model_json_schema(),
|
|
),
|
|
**common_params,
|
|
)
|
|
|
|
assert isinstance(response, ChatCompletionResponse)
|
|
assert response.completion_message.role == "assistant"
|
|
assert isinstance(response.completion_message.content, str)
|
|
|
|
answer = AnswerFormat.model_validate_json(response.completion_message.content)
|
|
expected = tc["expected"]
|
|
assert answer.first_name == expected["first_name"]
|
|
assert answer.last_name == expected["last_name"]
|
|
assert answer.year_of_birth == expected["year_of_birth"]
|
|
assert answer.num_seasons_in_nba == expected["num_seasons_in_nba"]
|
|
|
|
response = await inference_impl.chat_completion(
|
|
model_id=inference_model,
|
|
messages=[
|
|
SystemMessage(content="You are a helpful assistant."),
|
|
UserMessage(content="Please give me information about Michael Jordan."),
|
|
],
|
|
stream=False,
|
|
**common_params,
|
|
)
|
|
|
|
assert isinstance(response, ChatCompletionResponse)
|
|
assert isinstance(response.completion_message.content, str)
|
|
|
|
with pytest.raises(ValidationError):
|
|
AnswerFormat.model_validate_json(response.completion_message.content)
|
|
|
|
@pytest.mark.asyncio(loop_scope="session")
|
|
async def test_chat_completion_streaming(self, inference_model, inference_stack, common_params, sample_messages):
|
|
inference_impl, _ = inference_stack
|
|
response = [
|
|
r
|
|
async for r in await inference_impl.chat_completion(
|
|
model_id=inference_model,
|
|
messages=sample_messages,
|
|
stream=True,
|
|
**common_params,
|
|
)
|
|
]
|
|
|
|
assert len(response) > 0
|
|
assert all(isinstance(chunk, ChatCompletionResponseStreamChunk) for chunk in response)
|
|
grouped = group_chunks(response)
|
|
assert len(grouped[ChatCompletionResponseEventType.start]) == 1
|
|
assert len(grouped[ChatCompletionResponseEventType.progress]) > 0
|
|
assert len(grouped[ChatCompletionResponseEventType.complete]) == 1
|
|
|
|
end = grouped[ChatCompletionResponseEventType.complete][0]
|
|
assert end.event.stop_reason == StopReason.end_of_turn
|
|
|
|
@pytest.mark.asyncio(loop_scope="session")
|
|
async def test_chat_completion_with_tool_calling(
|
|
self,
|
|
inference_model,
|
|
inference_stack,
|
|
common_params,
|
|
sample_messages,
|
|
sample_tool_definition,
|
|
):
|
|
inference_impl, _ = inference_stack
|
|
messages = sample_messages + [
|
|
UserMessage(
|
|
content="What's the weather like in San Francisco?",
|
|
)
|
|
]
|
|
|
|
response = await inference_impl.chat_completion(
|
|
model_id=inference_model,
|
|
messages=messages,
|
|
tools=[sample_tool_definition],
|
|
stream=False,
|
|
**common_params,
|
|
)
|
|
|
|
assert isinstance(response, ChatCompletionResponse)
|
|
|
|
message = response.completion_message
|
|
|
|
# This is not supported in most providers :/ they don't return eom_id / eot_id
|
|
# stop_reason = get_expected_stop_reason(inference_settings["common_params"]["model"])
|
|
# assert message.stop_reason == stop_reason
|
|
assert message.tool_calls is not None
|
|
assert len(message.tool_calls) > 0
|
|
|
|
call = message.tool_calls[0]
|
|
assert call.tool_name == "get_weather"
|
|
assert "location" in call.arguments
|
|
assert "San Francisco" in call.arguments["location"]
|
|
|
|
@pytest.mark.asyncio(loop_scope="session")
|
|
async def test_chat_completion_with_tool_calling_streaming(
|
|
self,
|
|
inference_model,
|
|
inference_stack,
|
|
common_params,
|
|
sample_messages,
|
|
sample_tool_definition,
|
|
):
|
|
inference_impl, _ = inference_stack
|
|
messages = sample_messages + [
|
|
UserMessage(
|
|
content="What's the weather like in San Francisco?",
|
|
)
|
|
]
|
|
|
|
response = [
|
|
r
|
|
async for r in await inference_impl.chat_completion(
|
|
model_id=inference_model,
|
|
messages=messages,
|
|
tools=[sample_tool_definition],
|
|
stream=True,
|
|
**common_params,
|
|
)
|
|
]
|
|
assert len(response) > 0
|
|
assert all(isinstance(chunk, ChatCompletionResponseStreamChunk) for chunk in response)
|
|
grouped = group_chunks(response)
|
|
assert len(grouped[ChatCompletionResponseEventType.start]) == 1
|
|
assert len(grouped[ChatCompletionResponseEventType.progress]) > 0
|
|
assert len(grouped[ChatCompletionResponseEventType.complete]) == 1
|
|
|
|
# This is not supported in most providers :/ they don't return eom_id / eot_id
|
|
# expected_stop_reason = get_expected_stop_reason(
|
|
# inference_settings["common_params"]["model"]
|
|
# )
|
|
# end = grouped[ChatCompletionResponseEventType.complete][0]
|
|
# assert end.event.stop_reason == expected_stop_reason
|
|
|
|
if "Llama3.1" in inference_model:
|
|
assert all(
|
|
chunk.event.delta.type == "tool_call" for chunk in grouped[ChatCompletionResponseEventType.progress]
|
|
)
|
|
first = grouped[ChatCompletionResponseEventType.progress][0]
|
|
if not isinstance(first.event.delta.tool_call, ToolCall): # first chunk may contain entire call
|
|
assert first.event.delta.parse_status == ToolCallParseStatus.started
|
|
|
|
last = grouped[ChatCompletionResponseEventType.progress][-1]
|
|
# assert last.event.stop_reason == expected_stop_reason
|
|
assert last.event.delta.parse_status == ToolCallParseStatus.succeeded
|
|
assert isinstance(last.event.delta.tool_call, ToolCall)
|
|
|
|
call = last.event.delta.tool_call
|
|
assert call.tool_name == "get_weather"
|
|
assert "location" in call.arguments
|
|
assert "San Francisco" in call.arguments["location"]
|