forked from phoenix-oss/llama-stack-mirror
# What does this PR do? This changes all VectorIO providers classes to follow the pattern `<ProviderName>VectorIOConfig` and `<ProviderName>VectorIOAdapter`. All API endpoints for VectorIOs are currently consistent with `/vector-io`. Note that API endpoint for VectorDB stay unchanged as `/vector-dbs`. ## Test Plan I don't have a way to test all providers. This is a simple renaming so things should work as expected. --------- Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
189 lines
6.5 KiB
Python
189 lines
6.5 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
import json
|
|
import logging
|
|
from typing import Any, Dict, List, Optional
|
|
|
|
import weaviate
|
|
import weaviate.classes as wvc
|
|
from numpy.typing import NDArray
|
|
from weaviate.classes.init import Auth
|
|
from weaviate.classes.query import Filter
|
|
|
|
from llama_stack.apis.common.content_types import InterleavedContent
|
|
from llama_stack.apis.vector_dbs import VectorDB
|
|
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO
|
|
from llama_stack.distribution.request_headers import NeedsRequestProviderData
|
|
from llama_stack.providers.datatypes import Api, VectorDBsProtocolPrivate
|
|
from llama_stack.providers.utils.memory.vector_store import (
|
|
EmbeddingIndex,
|
|
VectorDBWithIndex,
|
|
)
|
|
|
|
from .config import WeaviateRequestProviderData, WeaviateVectorIOConfig
|
|
|
|
log = logging.getLogger(__name__)
|
|
|
|
|
|
class WeaviateIndex(EmbeddingIndex):
|
|
def __init__(self, client: weaviate.Client, collection_name: str):
|
|
self.client = client
|
|
self.collection_name = collection_name
|
|
|
|
async def add_chunks(self, chunks: List[Chunk], embeddings: NDArray):
|
|
assert len(chunks) == len(embeddings), (
|
|
f"Chunk length {len(chunks)} does not match embedding length {len(embeddings)}"
|
|
)
|
|
|
|
data_objects = []
|
|
for i, chunk in enumerate(chunks):
|
|
data_objects.append(
|
|
wvc.data.DataObject(
|
|
properties={
|
|
"chunk_content": chunk.model_dump_json(),
|
|
},
|
|
vector=embeddings[i].tolist(),
|
|
)
|
|
)
|
|
|
|
# Inserting chunks into a prespecified Weaviate collection
|
|
collection = self.client.collections.get(self.collection_name)
|
|
|
|
# TODO: make this async friendly
|
|
collection.data.insert_many(data_objects)
|
|
|
|
async def query(self, embedding: NDArray, k: int, score_threshold: float) -> QueryChunksResponse:
|
|
collection = self.client.collections.get(self.collection_name)
|
|
|
|
results = collection.query.near_vector(
|
|
near_vector=embedding.tolist(),
|
|
limit=k,
|
|
return_metadata=wvc.query.MetadataQuery(distance=True),
|
|
)
|
|
|
|
chunks = []
|
|
scores = []
|
|
for doc in results.objects:
|
|
chunk_json = doc.properties["chunk_content"]
|
|
try:
|
|
chunk_dict = json.loads(chunk_json)
|
|
chunk = Chunk(**chunk_dict)
|
|
except Exception:
|
|
log.exception(f"Failed to parse document: {chunk_json}")
|
|
continue
|
|
|
|
chunks.append(chunk)
|
|
scores.append(1.0 / doc.metadata.distance)
|
|
|
|
return QueryChunksResponse(chunks=chunks, scores=scores)
|
|
|
|
async def delete(self, chunk_ids: List[str]) -> None:
|
|
collection = self.client.collections.get(self.collection_name)
|
|
collection.data.delete_many(where=Filter.by_property("id").contains_any(chunk_ids))
|
|
|
|
|
|
class WeaviateVectorIOAdapter(
|
|
VectorIO,
|
|
NeedsRequestProviderData,
|
|
VectorDBsProtocolPrivate,
|
|
):
|
|
def __init__(self, config: WeaviateVectorIOConfig, inference_api: Api.inference) -> None:
|
|
self.config = config
|
|
self.inference_api = inference_api
|
|
self.client_cache = {}
|
|
self.cache = {}
|
|
|
|
def _get_client(self) -> weaviate.Client:
|
|
provider_data = self.get_request_provider_data()
|
|
assert provider_data is not None, "Request provider data must be set"
|
|
assert isinstance(provider_data, WeaviateRequestProviderData)
|
|
|
|
key = f"{provider_data.weaviate_cluster_url}::{provider_data.weaviate_api_key}"
|
|
if key in self.client_cache:
|
|
return self.client_cache[key]
|
|
|
|
client = weaviate.connect_to_weaviate_cloud(
|
|
cluster_url=provider_data.weaviate_cluster_url,
|
|
auth_credentials=Auth.api_key(provider_data.weaviate_api_key),
|
|
)
|
|
self.client_cache[key] = client
|
|
return client
|
|
|
|
async def initialize(self) -> None:
|
|
pass
|
|
|
|
async def shutdown(self) -> None:
|
|
for client in self.client_cache.values():
|
|
client.close()
|
|
|
|
async def register_vector_db(
|
|
self,
|
|
vector_db: VectorDB,
|
|
) -> None:
|
|
client = self._get_client()
|
|
|
|
# Create collection if it doesn't exist
|
|
if not client.collections.exists(vector_db.identifier):
|
|
client.collections.create(
|
|
name=vector_db.identifier,
|
|
vectorizer_config=wvc.config.Configure.Vectorizer.none(),
|
|
properties=[
|
|
wvc.config.Property(
|
|
name="chunk_content",
|
|
data_type=wvc.config.DataType.TEXT,
|
|
),
|
|
],
|
|
)
|
|
|
|
self.cache[vector_db.identifier] = VectorDBWithIndex(
|
|
vector_db,
|
|
WeaviateIndex(client=client, collection_name=vector_db.identifier),
|
|
self.inference_api,
|
|
)
|
|
|
|
async def _get_and_cache_vector_db_index(self, vector_db_id: str) -> Optional[VectorDBWithIndex]:
|
|
if vector_db_id in self.cache:
|
|
return self.cache[vector_db_id]
|
|
|
|
vector_db = await self.vector_db_store.get_vector_db(vector_db_id)
|
|
if not vector_db:
|
|
raise ValueError(f"Vector DB {vector_db_id} not found")
|
|
|
|
client = self._get_client()
|
|
if not client.collections.exists(vector_db.identifier):
|
|
raise ValueError(f"Collection with name `{vector_db.identifier}` not found")
|
|
|
|
index = VectorDBWithIndex(
|
|
vector_db=vector_db,
|
|
index=WeaviateIndex(client=client, collection_name=vector_db.identifier),
|
|
inference_api=self.inference_api,
|
|
)
|
|
self.cache[vector_db_id] = index
|
|
return index
|
|
|
|
async def insert_chunks(
|
|
self,
|
|
vector_db_id: str,
|
|
chunks: List[Chunk],
|
|
ttl_seconds: Optional[int] = None,
|
|
) -> None:
|
|
index = await self._get_and_cache_vector_db_index(vector_db_id)
|
|
if not index:
|
|
raise ValueError(f"Vector DB {vector_db_id} not found")
|
|
|
|
await index.insert_chunks(chunks)
|
|
|
|
async def query_chunks(
|
|
self,
|
|
vector_db_id: str,
|
|
query: InterleavedContent,
|
|
params: Optional[Dict[str, Any]] = None,
|
|
) -> QueryChunksResponse:
|
|
index = await self._get_and_cache_vector_db_index(vector_db_id)
|
|
if not index:
|
|
raise ValueError(f"Vector DB {vector_db_id} not found")
|
|
|
|
return await index.query_chunks(query, params)
|