forked from phoenix-oss/llama-stack-mirror
# What does this PR do? This PR adds two methods to the Inference API: - `batch_completion` - `batch_chat_completion` The motivation is for evaluations targeting a local inference engine (like meta-reference or vllm) where batch APIs provide for a substantial amount of acceleration. Why did I not add this to `Api.batch_inference` though? That just resulted in a _lot_ more book-keeping given the structure of Llama Stack. Had I done that, I would have needed to create a notion of a "batch model" resource, setup routing based on that, etc. This does not sound ideal. So what's the future of the batch inference API? I am not sure. Maybe we can keep it for true _asynchronous_ execution. So you can submit requests, and it can return a Job instance, etc. ## Test Plan Run meta-reference-gpu using: ```bash export INFERENCE_MODEL=meta-llama/Llama-4-Scout-17B-16E-Instruct export INFERENCE_CHECKPOINT_DIR=../checkpoints/Llama-4-Scout-17B-16E-Instruct-20250331210000 export MODEL_PARALLEL_SIZE=4 export MAX_BATCH_SIZE=32 export MAX_SEQ_LEN=6144 LLAMA_MODELS_DEBUG=1 llama stack run meta-reference-gpu ``` Then run the batch inference test case.
136 lines
3.8 KiB
YAML
136 lines
3.8 KiB
YAML
version: '2'
|
|
image_name: meta-reference-gpu
|
|
apis:
|
|
- agents
|
|
- datasetio
|
|
- eval
|
|
- inference
|
|
- safety
|
|
- scoring
|
|
- telemetry
|
|
- tool_runtime
|
|
- vector_io
|
|
providers:
|
|
inference:
|
|
- provider_id: meta-reference-inference
|
|
provider_type: inline::meta-reference
|
|
config:
|
|
model: ${env.INFERENCE_MODEL}
|
|
checkpoint_dir: ${env.INFERENCE_CHECKPOINT_DIR:null}
|
|
quantization:
|
|
type: ${env.QUANTIZATION_TYPE:bf16}
|
|
model_parallel_size: ${env.MODEL_PARALLEL_SIZE:0}
|
|
max_batch_size: ${env.MAX_BATCH_SIZE:1}
|
|
max_seq_len: ${env.MAX_SEQ_LEN:4096}
|
|
- provider_id: sentence-transformers
|
|
provider_type: inline::sentence-transformers
|
|
config: {}
|
|
vector_io:
|
|
- provider_id: faiss
|
|
provider_type: inline::faiss
|
|
config:
|
|
kvstore:
|
|
type: sqlite
|
|
namespace: null
|
|
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/meta-reference-gpu}/faiss_store.db
|
|
safety:
|
|
- provider_id: llama-guard
|
|
provider_type: inline::llama-guard
|
|
config:
|
|
excluded_categories: []
|
|
agents:
|
|
- provider_id: meta-reference
|
|
provider_type: inline::meta-reference
|
|
config:
|
|
persistence_store:
|
|
type: sqlite
|
|
namespace: null
|
|
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/meta-reference-gpu}/agents_store.db
|
|
telemetry:
|
|
- provider_id: meta-reference
|
|
provider_type: inline::meta-reference
|
|
config:
|
|
service_name: "${env.OTEL_SERVICE_NAME:\u200B}"
|
|
sinks: ${env.TELEMETRY_SINKS:console,sqlite}
|
|
sqlite_db_path: ${env.SQLITE_DB_PATH:~/.llama/distributions/meta-reference-gpu/trace_store.db}
|
|
eval:
|
|
- provider_id: meta-reference
|
|
provider_type: inline::meta-reference
|
|
config:
|
|
kvstore:
|
|
type: sqlite
|
|
namespace: null
|
|
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/meta-reference-gpu}/meta_reference_eval.db
|
|
datasetio:
|
|
- provider_id: huggingface
|
|
provider_type: remote::huggingface
|
|
config:
|
|
kvstore:
|
|
type: sqlite
|
|
namespace: null
|
|
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/meta-reference-gpu}/huggingface_datasetio.db
|
|
- provider_id: localfs
|
|
provider_type: inline::localfs
|
|
config:
|
|
kvstore:
|
|
type: sqlite
|
|
namespace: null
|
|
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/meta-reference-gpu}/localfs_datasetio.db
|
|
scoring:
|
|
- provider_id: basic
|
|
provider_type: inline::basic
|
|
config: {}
|
|
- provider_id: llm-as-judge
|
|
provider_type: inline::llm-as-judge
|
|
config: {}
|
|
- provider_id: braintrust
|
|
provider_type: inline::braintrust
|
|
config:
|
|
openai_api_key: ${env.OPENAI_API_KEY:}
|
|
tool_runtime:
|
|
- provider_id: brave-search
|
|
provider_type: remote::brave-search
|
|
config:
|
|
api_key: ${env.BRAVE_SEARCH_API_KEY:}
|
|
max_results: 3
|
|
- provider_id: tavily-search
|
|
provider_type: remote::tavily-search
|
|
config:
|
|
api_key: ${env.TAVILY_SEARCH_API_KEY:}
|
|
max_results: 3
|
|
- provider_id: code-interpreter
|
|
provider_type: inline::code-interpreter
|
|
config: {}
|
|
- provider_id: rag-runtime
|
|
provider_type: inline::rag-runtime
|
|
config: {}
|
|
- provider_id: model-context-protocol
|
|
provider_type: remote::model-context-protocol
|
|
config: {}
|
|
metadata_store:
|
|
type: sqlite
|
|
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/meta-reference-gpu}/registry.db
|
|
models:
|
|
- metadata: {}
|
|
model_id: ${env.INFERENCE_MODEL}
|
|
provider_id: meta-reference-inference
|
|
model_type: llm
|
|
- metadata:
|
|
embedding_dimension: 384
|
|
model_id: all-MiniLM-L6-v2
|
|
provider_id: sentence-transformers
|
|
model_type: embedding
|
|
shields: []
|
|
vector_dbs: []
|
|
datasets: []
|
|
scoring_fns: []
|
|
benchmarks: []
|
|
tool_groups:
|
|
- toolgroup_id: builtin::websearch
|
|
provider_id: tavily-search
|
|
- toolgroup_id: builtin::rag
|
|
provider_id: rag-runtime
|
|
- toolgroup_id: builtin::code_interpreter
|
|
provider_id: code-interpreter
|
|
server:
|
|
port: 8321
|