llama-stack/llama_stack/apis/eval/eval.py
Ashwin Bharambe 314ee09ae3
chore: move all Llama Stack types from llama-models to llama-stack (#1098)
llama-models should have extremely minimal cruft. Its sole purpose
should be didactic -- show the simplest implementation of the llama
models and document the prompt formats, etc.

This PR is the complement to
https://github.com/meta-llama/llama-models/pull/279

## Test Plan

Ensure all `llama` CLI `model` sub-commands work:

```bash
llama model list
llama model download --model-id ...
llama model prompt-format -m ...
```

Ran tests:
```bash
cd tests/client-sdk
LLAMA_STACK_CONFIG=fireworks pytest -s -v inference/
LLAMA_STACK_CONFIG=fireworks pytest -s -v vector_io/
LLAMA_STACK_CONFIG=fireworks pytest -s -v agents/
```

Create a fresh venv `uv venv && source .venv/bin/activate` and run
`llama stack build --template fireworks --image-type venv` followed by
`llama stack run together --image-type venv` <-- the server runs

Also checked that the OpenAPI generator can run and there is no change
in the generated files as a result.

```bash
cd docs/openapi_generator
sh run_openapi_generator.sh
```
2025-02-14 09:10:59 -08:00

111 lines
3.9 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict, List, Literal, Optional, Protocol, Union
from pydantic import BaseModel, Field
from typing_extensions import Annotated
from llama_stack.apis.agents import AgentConfig
from llama_stack.apis.common.job_types import Job, JobStatus
from llama_stack.apis.inference import SamplingParams, SystemMessage
from llama_stack.apis.scoring import ScoringResult
from llama_stack.apis.scoring_functions import ScoringFnParams
from llama_stack.schema_utils import json_schema_type, register_schema, webmethod
@json_schema_type
class ModelCandidate(BaseModel):
type: Literal["model"] = "model"
model: str
sampling_params: SamplingParams
system_message: Optional[SystemMessage] = None
@json_schema_type
class AgentCandidate(BaseModel):
type: Literal["agent"] = "agent"
config: AgentConfig
EvalCandidate = register_schema(
Annotated[Union[ModelCandidate, AgentCandidate], Field(discriminator="type")],
name="EvalCandidate",
)
@json_schema_type
class BenchmarkConfig(BaseModel):
type: Literal["benchmark"] = "benchmark"
eval_candidate: EvalCandidate
scoring_params: Dict[str, ScoringFnParams] = Field(
description="Map between scoring function id and parameters for each scoring function you want to run",
default_factory=dict,
)
num_examples: Optional[int] = Field(
description="Number of examples to evaluate (useful for testing), if not provided, all examples in the dataset will be evaluated",
default=None,
)
# we could optinally add any specific dataset config here
@json_schema_type
class EvaluateResponse(BaseModel):
generations: List[Dict[str, Any]]
# each key in the dict is a scoring function name
scores: Dict[str, ScoringResult]
class Eval(Protocol):
@webmethod(route="/eval/benchmarks/{benchmark_id}/jobs", method="POST")
async def run_eval(
self,
benchmark_id: str,
task_config: BenchmarkConfig,
) -> Job: ...
@webmethod(route="/eval/benchmarks/{benchmark_id}/evaluations", method="POST")
async def evaluate_rows(
self,
benchmark_id: str,
input_rows: List[Dict[str, Any]],
scoring_functions: List[str],
task_config: BenchmarkConfig,
) -> EvaluateResponse: ...
@webmethod(route="/eval/benchmarks/{benchmark_id}/jobs/{job_id}", method="GET")
async def job_status(self, benchmark_id: str, job_id: str) -> Optional[JobStatus]: ...
@webmethod(route="/eval/benchmarks/{benchmark_id}/jobs/{job_id}", method="DELETE")
async def job_cancel(self, benchmark_id: str, job_id: str) -> None: ...
@webmethod(route="/eval/benchmarks/{benchmark_id}/jobs/{job_id}/result", method="GET")
async def job_result(self, benchmark_id: str, job_id: str) -> EvaluateResponse: ...
@webmethod(route="/eval/tasks/{task_id}/jobs", method="POST")
async def DEPRECATED_run_eval(
self,
task_id: str,
task_config: BenchmarkConfig,
) -> Job: ...
@webmethod(route="/eval/tasks/{task_id}/evaluations", method="POST")
async def DEPRECATED_evaluate_rows(
self,
task_id: str,
input_rows: List[Dict[str, Any]],
scoring_functions: List[str],
task_config: BenchmarkConfig,
) -> EvaluateResponse: ...
@webmethod(route="/eval/tasks/{task_id}/jobs/{job_id}", method="GET")
async def DEPRECATED_job_status(self, task_id: str, job_id: str) -> Optional[JobStatus]: ...
@webmethod(route="/eval/tasks/{task_id}/jobs/{job_id}", method="DELETE")
async def DEPRECATED_job_cancel(self, task_id: str, job_id: str) -> None: ...
@webmethod(route="/eval/tasks/{task_id}/jobs/{job_id}/result", method="GET")
async def DEPRECATED_job_result(self, task_id: str, job_id: str) -> EvaluateResponse: ...