forked from phoenix-oss/llama-stack-mirror
llama-models should have extremely minimal cruft. Its sole purpose should be didactic -- show the simplest implementation of the llama models and document the prompt formats, etc. This PR is the complement to https://github.com/meta-llama/llama-models/pull/279 ## Test Plan Ensure all `llama` CLI `model` sub-commands work: ```bash llama model list llama model download --model-id ... llama model prompt-format -m ... ``` Ran tests: ```bash cd tests/client-sdk LLAMA_STACK_CONFIG=fireworks pytest -s -v inference/ LLAMA_STACK_CONFIG=fireworks pytest -s -v vector_io/ LLAMA_STACK_CONFIG=fireworks pytest -s -v agents/ ``` Create a fresh venv `uv venv && source .venv/bin/activate` and run `llama stack build --template fireworks --image-type venv` followed by `llama stack run together --image-type venv` <-- the server runs Also checked that the OpenAPI generator can run and there is no change in the generated files as a result. ```bash cd docs/openapi_generator sh run_openapi_generator.sh ```
66 lines
1.9 KiB
Python
66 lines
1.9 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from typing import List, Literal, Optional, Protocol, runtime_checkable
|
|
|
|
from pydantic import BaseModel
|
|
|
|
from llama_stack.apis.resource import Resource, ResourceType
|
|
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
|
|
from llama_stack.schema_utils import json_schema_type, webmethod
|
|
|
|
|
|
@json_schema_type
|
|
class VectorDB(Resource):
|
|
type: Literal[ResourceType.vector_db.value] = ResourceType.vector_db.value
|
|
|
|
embedding_model: str
|
|
embedding_dimension: int
|
|
|
|
@property
|
|
def vector_db_id(self) -> str:
|
|
return self.identifier
|
|
|
|
@property
|
|
def provider_vector_db_id(self) -> str:
|
|
return self.provider_resource_id
|
|
|
|
|
|
class VectorDBInput(BaseModel):
|
|
vector_db_id: str
|
|
embedding_model: str
|
|
embedding_dimension: int
|
|
provider_vector_db_id: Optional[str] = None
|
|
|
|
|
|
class ListVectorDBsResponse(BaseModel):
|
|
data: List[VectorDB]
|
|
|
|
|
|
@runtime_checkable
|
|
@trace_protocol
|
|
class VectorDBs(Protocol):
|
|
@webmethod(route="/vector-dbs", method="GET")
|
|
async def list_vector_dbs(self) -> ListVectorDBsResponse: ...
|
|
|
|
@webmethod(route="/vector-dbs/{vector_db_id:path}", method="GET")
|
|
async def get_vector_db(
|
|
self,
|
|
vector_db_id: str,
|
|
) -> Optional[VectorDB]: ...
|
|
|
|
@webmethod(route="/vector-dbs", method="POST")
|
|
async def register_vector_db(
|
|
self,
|
|
vector_db_id: str,
|
|
embedding_model: str,
|
|
embedding_dimension: Optional[int] = 384,
|
|
provider_id: Optional[str] = None,
|
|
provider_vector_db_id: Optional[str] = None,
|
|
) -> VectorDB: ...
|
|
|
|
@webmethod(route="/vector-dbs/{vector_db_id:path}", method="DELETE")
|
|
async def unregister_vector_db(self, vector_db_id: str) -> None: ...
|