llama-stack/llama_stack/apis/vector_io/vector_io.py
Ashwin Bharambe 314ee09ae3
chore: move all Llama Stack types from llama-models to llama-stack (#1098)
llama-models should have extremely minimal cruft. Its sole purpose
should be didactic -- show the simplest implementation of the llama
models and document the prompt formats, etc.

This PR is the complement to
https://github.com/meta-llama/llama-models/pull/279

## Test Plan

Ensure all `llama` CLI `model` sub-commands work:

```bash
llama model list
llama model download --model-id ...
llama model prompt-format -m ...
```

Ran tests:
```bash
cd tests/client-sdk
LLAMA_STACK_CONFIG=fireworks pytest -s -v inference/
LLAMA_STACK_CONFIG=fireworks pytest -s -v vector_io/
LLAMA_STACK_CONFIG=fireworks pytest -s -v agents/
```

Create a fresh venv `uv venv && source .venv/bin/activate` and run
`llama stack build --template fireworks --image-type venv` followed by
`llama stack run together --image-type venv` <-- the server runs

Also checked that the OpenAPI generator can run and there is no change
in the generated files as a result.

```bash
cd docs/openapi_generator
sh run_openapi_generator.sh
```
2025-02-14 09:10:59 -08:00

57 lines
1.8 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict, List, Optional, Protocol, runtime_checkable
from pydantic import BaseModel, Field
from llama_stack.apis.inference import InterleavedContent
from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
from llama_stack.schema_utils import json_schema_type, webmethod
class Chunk(BaseModel):
content: InterleavedContent
metadata: Dict[str, Any] = Field(default_factory=dict)
@json_schema_type
class QueryChunksResponse(BaseModel):
chunks: List[Chunk]
scores: List[float]
class VectorDBStore(Protocol):
def get_vector_db(self, vector_db_id: str) -> Optional[VectorDB]: ...
@runtime_checkable
@trace_protocol
class VectorIO(Protocol):
vector_db_store: VectorDBStore
# this will just block now until chunks are inserted, but it should
# probably return a Job instance which can be polled for completion
@webmethod(route="/vector-io/insert", method="POST")
async def insert_chunks(
self,
vector_db_id: str,
chunks: List[Chunk],
ttl_seconds: Optional[int] = None,
) -> None: ...
@webmethod(route="/vector-io/query", method="POST")
async def query_chunks(
self,
vector_db_id: str,
query: InterleavedContent,
params: Optional[Dict[str, Any]] = None,
) -> QueryChunksResponse: ...