forked from phoenix-oss/llama-stack-mirror
llama-models should have extremely minimal cruft. Its sole purpose should be didactic -- show the simplest implementation of the llama models and document the prompt formats, etc. This PR is the complement to https://github.com/meta-llama/llama-models/pull/279 ## Test Plan Ensure all `llama` CLI `model` sub-commands work: ```bash llama model list llama model download --model-id ... llama model prompt-format -m ... ``` Ran tests: ```bash cd tests/client-sdk LLAMA_STACK_CONFIG=fireworks pytest -s -v inference/ LLAMA_STACK_CONFIG=fireworks pytest -s -v vector_io/ LLAMA_STACK_CONFIG=fireworks pytest -s -v agents/ ``` Create a fresh venv `uv venv && source .venv/bin/activate` and run `llama stack build --template fireworks --image-type venv` followed by `llama stack run together --image-type venv` <-- the server runs Also checked that the OpenAPI generator can run and there is no change in the generated files as a result. ```bash cd docs/openapi_generator sh run_openapi_generator.sh ```
57 lines
1.8 KiB
Python
57 lines
1.8 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
from typing import Any, Dict, List, Optional, Protocol, runtime_checkable
|
|
|
|
from pydantic import BaseModel, Field
|
|
|
|
from llama_stack.apis.inference import InterleavedContent
|
|
from llama_stack.apis.vector_dbs import VectorDB
|
|
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
|
|
from llama_stack.schema_utils import json_schema_type, webmethod
|
|
|
|
|
|
class Chunk(BaseModel):
|
|
content: InterleavedContent
|
|
metadata: Dict[str, Any] = Field(default_factory=dict)
|
|
|
|
|
|
@json_schema_type
|
|
class QueryChunksResponse(BaseModel):
|
|
chunks: List[Chunk]
|
|
scores: List[float]
|
|
|
|
|
|
class VectorDBStore(Protocol):
|
|
def get_vector_db(self, vector_db_id: str) -> Optional[VectorDB]: ...
|
|
|
|
|
|
@runtime_checkable
|
|
@trace_protocol
|
|
class VectorIO(Protocol):
|
|
vector_db_store: VectorDBStore
|
|
|
|
# this will just block now until chunks are inserted, but it should
|
|
# probably return a Job instance which can be polled for completion
|
|
@webmethod(route="/vector-io/insert", method="POST")
|
|
async def insert_chunks(
|
|
self,
|
|
vector_db_id: str,
|
|
chunks: List[Chunk],
|
|
ttl_seconds: Optional[int] = None,
|
|
) -> None: ...
|
|
|
|
@webmethod(route="/vector-io/query", method="POST")
|
|
async def query_chunks(
|
|
self,
|
|
vector_db_id: str,
|
|
query: InterleavedContent,
|
|
params: Optional[Dict[str, Any]] = None,
|
|
) -> QueryChunksResponse: ...
|