llama-stack/llama_stack/models/llama/llama3/prompt_templates/system_prompts.py
Ashwin Bharambe 314ee09ae3
chore: move all Llama Stack types from llama-models to llama-stack (#1098)
llama-models should have extremely minimal cruft. Its sole purpose
should be didactic -- show the simplest implementation of the llama
models and document the prompt formats, etc.

This PR is the complement to
https://github.com/meta-llama/llama-models/pull/279

## Test Plan

Ensure all `llama` CLI `model` sub-commands work:

```bash
llama model list
llama model download --model-id ...
llama model prompt-format -m ...
```

Ran tests:
```bash
cd tests/client-sdk
LLAMA_STACK_CONFIG=fireworks pytest -s -v inference/
LLAMA_STACK_CONFIG=fireworks pytest -s -v vector_io/
LLAMA_STACK_CONFIG=fireworks pytest -s -v agents/
```

Create a fresh venv `uv venv && source .venv/bin/activate` and run
`llama stack build --template fireworks --image-type venv` followed by
`llama stack run together --image-type venv` <-- the server runs

Also checked that the OpenAPI generator can run and there is no change
in the generated files as a result.

```bash
cd docs/openapi_generator
sh run_openapi_generator.sh
```
2025-02-14 09:10:59 -08:00

311 lines
12 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# top-level folder for each specific model found within the models/ directory at
# the top-level of this source tree.
import textwrap
from datetime import datetime
from typing import Any, List, Optional
from llama_models.datatypes import (
BuiltinTool,
)
from llama_stack.models.llama.datatypes import (
ToolDefinition,
ToolParamDefinition,
)
from .base import PromptTemplate, PromptTemplateGeneratorBase
class SystemDefaultGenerator(PromptTemplateGeneratorBase):
def gen(self, *args, **kwargs) -> PromptTemplate:
template_str = textwrap.dedent(
"""
Cutting Knowledge Date: December 2023
Today Date: {{ today }}
"""
)
return PromptTemplate(
template_str.lstrip("\n"),
{"today": datetime.now().strftime("%d %B %Y")},
)
def data_examples(self) -> List[Any]:
return [None]
class BuiltinToolGenerator(PromptTemplateGeneratorBase):
def _tool_breakdown(self, tools: List[ToolDefinition]):
builtin_tools, custom_tools = [], []
for dfn in tools:
if isinstance(dfn.tool_name, BuiltinTool):
builtin_tools.append(dfn)
else:
custom_tools.append(dfn)
return builtin_tools, custom_tools
def gen(self, tools: List[ToolDefinition]) -> PromptTemplate:
builtin_tools, custom_tools = self._tool_breakdown(tools)
template_str = textwrap.dedent(
"""
{% if builtin_tools or custom_tools -%}
Environment: ipython
{% endif -%}
{% set builtin_tools = builtin_tools | reject('equalto', 'code_interpreter') | list -%}
{% if builtin_tools -%}
Tools: {{ builtin_tools | join(", ") | trim -}}
{% endif %}
"""
)
return PromptTemplate(
template_str.lstrip("\n"),
{
"builtin_tools": [t.tool_name.value for t in builtin_tools],
"custom_tools": custom_tools,
},
)
def data_examples(self) -> List[List[ToolDefinition]]:
return [
# builtin tools
[
ToolDefinition(tool_name=BuiltinTool.code_interpreter),
ToolDefinition(tool_name=BuiltinTool.brave_search),
ToolDefinition(tool_name=BuiltinTool.wolfram_alpha),
],
# only code interpretor
[
ToolDefinition(tool_name=BuiltinTool.code_interpreter),
],
]
class JsonCustomToolGenerator(PromptTemplateGeneratorBase):
def gen(self, custom_tools: List[ToolDefinition]) -> PromptTemplate:
template_str = textwrap.dedent(
"""
Answer the user's question by making use of the following functions if needed.
If none of the function can be used, please say so.
Here is a list of functions in JSON format:
{% for t in custom_tools -%}
{# manually setting up JSON because jinja sorts keys in unexpected ways -#}
{%- set tname = t.tool_name -%}
{%- set tdesc = t.description -%}
{%- set tparams = t.parameters -%}
{%- set required_params = [] -%}
{%- for name, param in tparams.items() if param.required == true -%}
{%- set _ = required_params.append(name) -%}
{%- endfor -%}
{
"type": "function",
"function": {
"name": "{{tname}}",
"description": "{{tdesc}}",
"parameters": {
"type": "object",
"properties": [
{%- for name, param in tparams.items() %}
{
"{{name}}": {
"type": "object",
"description": "{{param.description}}"
}
}{% if not loop.last %},{% endif %}
{%- endfor %}
],
"required": {{ required_params | tojson }}
}
}
}
{% endfor %}
Return function calls in JSON format.
"""
)
return PromptTemplate(
template_str.lstrip("\n"),
{"custom_tools": [t.model_dump() for t in custom_tools]},
)
def data_examples(self) -> List[List[ToolDefinition]]:
return [
[
ToolDefinition(
tool_name="trending_songs",
description="Returns the trending songs on a Music site",
parameters={
"n": ToolParamDefinition(
param_type="int",
description="The number of songs to return",
required=True,
),
"genre": ToolParamDefinition(
param_type="str",
description="The genre of the songs to return",
required=False,
),
},
),
]
]
class FunctionTagCustomToolGenerator(PromptTemplateGeneratorBase):
def gen(self, custom_tools: List[ToolDefinition]) -> PromptTemplate:
template_str = textwrap.dedent(
"""
You have access to the following functions:
{% for t in custom_tools %}
{#- manually setting up JSON because jinja sorts keys in unexpected ways -#}
{%- set tname = t.tool_name -%}
{%- set tdesc = t.description -%}
{%- set modified_params = t.parameters.copy() -%}
{%- for key, value in modified_params.items() -%}
{%- if 'default' in value -%}
{%- set _ = value.pop('default', None) -%}
{%- endif -%}
{%- endfor -%}
{%- set tparams = modified_params | tojson -%}
Use the function '{{ tname }}' to '{{ tdesc }}':
{"name": "{{tname}}", "description": "{{tdesc}}", "parameters": {{tparams}}}
{% endfor -%}
Think very carefully before calling functions.
If you choose to call a function ONLY reply in the following format with no prefix or suffix:
<function=example_function_name>{"example_name": "example_value"}</function>
Reminder:
- If looking for real time information use relevant functions before falling back to brave_search
- Function calls MUST follow the specified format, start with <function= and end with </function>
- Required parameters MUST be specified
- Only call one function at a time
- Put the entire function call reply on one line
"""
)
return PromptTemplate(
template_str.lstrip("\n"),
{"custom_tools": [t.model_dump() for t in custom_tools]},
)
def data_examples(self) -> List[List[ToolDefinition]]:
return [
[
ToolDefinition(
tool_name="trending_songs",
description="Returns the trending songs on a Music site",
parameters={
"n": ToolParamDefinition(
param_type="int",
description="The number of songs to return",
required=True,
),
"genre": ToolParamDefinition(
param_type="str",
description="The genre of the songs to return",
required=False,
),
},
),
]
]
class PythonListCustomToolGenerator(PromptTemplateGeneratorBase): # noqa: N801
DEFAULT_PROMPT = textwrap.dedent(
"""
You are an expert in composing functions. You are given a question and a set of possible functions.
Based on the question, you will need to make one or more function/tool calls to achieve the purpose.
If none of the function can be used, point it out. If the given question lacks the parameters required by the function,
also point it out. You should only return the function call in tools call sections.
{{ function_description }}
""".strip("\n")
)
def gen(self, custom_tools: List[ToolDefinition], system_prompt: Optional[str] = None) -> PromptTemplate:
system_prompt = system_prompt or self.DEFAULT_PROMPT
return PromptTemplate(
system_prompt,
{"function_description": self._gen_function_description(custom_tools)},
)
def _gen_function_description(self, custom_tools: List[ToolDefinition]) -> PromptTemplate:
template_str = textwrap.dedent(
"""
If you decide to invoke any of the function(s), you MUST put it in the format of [func_name1(params_name1=params_value1, params_name2=params_value2...), func_name2(params)]
You SHOULD NOT include any other text in the response.
Here is a list of functions in JSON format that you can invoke.
[
{% for t in tools -%}
{# manually setting up JSON because jinja sorts keys in unexpected ways -#}
{%- set tname = t.tool_name -%}
{%- set tdesc = t.description -%}
{%- set tparams = t.parameters -%}
{%- set required_params = [] -%}
{%- for name, param in tparams.items() if param.required == true -%}
{%- set _ = required_params.append(name) -%}
{%- endfor -%}
{
"name": "{{tname}}",
"description": "{{tdesc}}",
"parameters": {
"type": "dict",
"required": {{ required_params | tojson }},
"properties": {
{%- for name, param in tparams.items() %}
"{{name}}": {
"type": "{{param.param_type}}",
"description": "{{param.description}}"{% if param.default %},
"default": "{{param.default}}"{% endif %}
}{% if not loop.last %},{% endif %}
{%- endfor %}
}
}
}{% if not loop.last %},
{% endif -%}
{%- endfor %}
]
"""
)
return PromptTemplate(
template_str.strip("\n"),
{"tools": [t.model_dump() for t in custom_tools]},
).render()
def data_examples(self) -> List[List[ToolDefinition]]:
return [
[
ToolDefinition(
tool_name="get_weather",
description="Get weather info for places",
parameters={
"city": ToolParamDefinition(
param_type="string",
description="The name of the city to get the weather for",
required=True,
),
"metric": ToolParamDefinition(
param_type="string",
description="The metric for weather. Options are: celsius, fahrenheit",
required=False,
default="celsius",
),
},
),
]
]