forked from phoenix-oss/llama-stack-mirror
llama-models should have extremely minimal cruft. Its sole purpose should be didactic -- show the simplest implementation of the llama models and document the prompt formats, etc. This PR is the complement to https://github.com/meta-llama/llama-models/pull/279 ## Test Plan Ensure all `llama` CLI `model` sub-commands work: ```bash llama model list llama model download --model-id ... llama model prompt-format -m ... ``` Ran tests: ```bash cd tests/client-sdk LLAMA_STACK_CONFIG=fireworks pytest -s -v inference/ LLAMA_STACK_CONFIG=fireworks pytest -s -v vector_io/ LLAMA_STACK_CONFIG=fireworks pytest -s -v agents/ ``` Create a fresh venv `uv venv && source .venv/bin/activate` and run `llama stack build --template fireworks --image-type venv` followed by `llama stack run together --image-type venv` <-- the server runs Also checked that the OpenAPI generator can run and there is no change in the generated files as a result. ```bash cd docs/openapi_generator sh run_openapi_generator.sh ```
193 lines
6.4 KiB
Python
193 lines
6.4 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from typing import AsyncGenerator, List, Optional, Union
|
|
|
|
from cerebras.cloud.sdk import AsyncCerebras
|
|
from llama_models.llama3.api.chat_format import ChatFormat
|
|
from llama_models.llama3.api.tokenizer import Tokenizer
|
|
|
|
from llama_stack.apis.common.content_types import InterleavedContent
|
|
from llama_stack.apis.inference import (
|
|
ChatCompletionRequest,
|
|
CompletionRequest,
|
|
CompletionResponse,
|
|
EmbeddingsResponse,
|
|
Inference,
|
|
LogProbConfig,
|
|
Message,
|
|
ResponseFormat,
|
|
SamplingParams,
|
|
ToolChoice,
|
|
ToolConfig,
|
|
ToolDefinition,
|
|
ToolPromptFormat,
|
|
)
|
|
from llama_stack.models.llama.datatypes import CoreModelId, TopKSamplingStrategy
|
|
from llama_stack.providers.utils.inference.model_registry import (
|
|
ModelRegistryHelper,
|
|
build_model_alias,
|
|
)
|
|
from llama_stack.providers.utils.inference.openai_compat import (
|
|
get_sampling_options,
|
|
process_chat_completion_response,
|
|
process_chat_completion_stream_response,
|
|
process_completion_response,
|
|
process_completion_stream_response,
|
|
)
|
|
from llama_stack.providers.utils.inference.prompt_adapter import (
|
|
chat_completion_request_to_prompt,
|
|
completion_request_to_prompt,
|
|
)
|
|
|
|
from .config import CerebrasImplConfig
|
|
|
|
model_aliases = [
|
|
build_model_alias(
|
|
"llama3.1-8b",
|
|
CoreModelId.llama3_1_8b_instruct.value,
|
|
),
|
|
build_model_alias(
|
|
"llama-3.3-70b",
|
|
CoreModelId.llama3_3_70b_instruct.value,
|
|
),
|
|
]
|
|
|
|
|
|
class CerebrasInferenceAdapter(ModelRegistryHelper, Inference):
|
|
def __init__(self, config: CerebrasImplConfig) -> None:
|
|
ModelRegistryHelper.__init__(
|
|
self,
|
|
model_aliases=model_aliases,
|
|
)
|
|
self.config = config
|
|
self.formatter = ChatFormat(Tokenizer.get_instance())
|
|
|
|
self.client = AsyncCerebras(
|
|
base_url=self.config.base_url,
|
|
api_key=self.config.api_key.get_secret_value(),
|
|
)
|
|
|
|
async def initialize(self) -> None:
|
|
return
|
|
|
|
async def shutdown(self) -> None:
|
|
pass
|
|
|
|
async def completion(
|
|
self,
|
|
model_id: str,
|
|
content: InterleavedContent,
|
|
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
|
response_format: Optional[ResponseFormat] = None,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
) -> AsyncGenerator:
|
|
model = await self.model_store.get_model(model_id)
|
|
request = CompletionRequest(
|
|
model=model.provider_resource_id,
|
|
content=content,
|
|
sampling_params=sampling_params,
|
|
response_format=response_format,
|
|
stream=stream,
|
|
logprobs=logprobs,
|
|
)
|
|
if stream:
|
|
return self._stream_completion(
|
|
request,
|
|
)
|
|
else:
|
|
return await self._nonstream_completion(request)
|
|
|
|
async def _nonstream_completion(self, request: CompletionRequest) -> CompletionResponse:
|
|
params = await self._get_params(request)
|
|
|
|
r = await self.client.completions.create(**params)
|
|
|
|
return process_completion_response(r, self.formatter)
|
|
|
|
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
|
|
params = await self._get_params(request)
|
|
|
|
stream = await self.client.completions.create(**params)
|
|
|
|
async for chunk in process_completion_stream_response(stream, self.formatter):
|
|
yield chunk
|
|
|
|
async def chat_completion(
|
|
self,
|
|
model_id: str,
|
|
messages: List[Message],
|
|
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
|
tools: Optional[List[ToolDefinition]] = None,
|
|
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
|
tool_prompt_format: Optional[ToolPromptFormat] = None,
|
|
response_format: Optional[ResponseFormat] = None,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
tool_config: Optional[ToolConfig] = None,
|
|
) -> AsyncGenerator:
|
|
model = await self.model_store.get_model(model_id)
|
|
request = ChatCompletionRequest(
|
|
model=model.provider_resource_id,
|
|
messages=messages,
|
|
sampling_params=sampling_params,
|
|
tools=tools or [],
|
|
tool_choice=tool_choice,
|
|
tool_prompt_format=tool_prompt_format,
|
|
response_format=response_format,
|
|
stream=stream,
|
|
logprobs=logprobs,
|
|
tool_config=tool_config,
|
|
)
|
|
|
|
if stream:
|
|
return self._stream_chat_completion(request)
|
|
else:
|
|
return await self._nonstream_chat_completion(request)
|
|
|
|
async def _nonstream_chat_completion(self, request: CompletionRequest) -> CompletionResponse:
|
|
params = await self._get_params(request)
|
|
|
|
r = await self.client.completions.create(**params)
|
|
|
|
return process_chat_completion_response(r, self.formatter, request)
|
|
|
|
async def _stream_chat_completion(self, request: CompletionRequest) -> AsyncGenerator:
|
|
params = await self._get_params(request)
|
|
|
|
stream = await self.client.completions.create(**params)
|
|
|
|
async for chunk in process_chat_completion_stream_response(stream, self.formatter, request):
|
|
yield chunk
|
|
|
|
async def _get_params(self, request: Union[ChatCompletionRequest, CompletionRequest]) -> dict:
|
|
if request.sampling_params and isinstance(request.sampling_params.strategy, TopKSamplingStrategy):
|
|
raise ValueError("`top_k` not supported by Cerebras")
|
|
|
|
prompt = ""
|
|
if isinstance(request, ChatCompletionRequest):
|
|
prompt = await chat_completion_request_to_prompt(
|
|
request, self.get_llama_model(request.model), self.formatter
|
|
)
|
|
elif isinstance(request, CompletionRequest):
|
|
prompt = await completion_request_to_prompt(request, self.formatter)
|
|
else:
|
|
raise ValueError(f"Unknown request type {type(request)}")
|
|
|
|
return {
|
|
"model": request.model,
|
|
"prompt": prompt,
|
|
"stream": request.stream,
|
|
**get_sampling_options(request.sampling_params),
|
|
}
|
|
|
|
async def embeddings(
|
|
self,
|
|
model_id: str,
|
|
contents: List[InterleavedContent],
|
|
) -> EmbeddingsResponse:
|
|
raise NotImplementedError()
|