forked from phoenix-oss/llama-stack-mirror
Lint check in main branch is failing. This fixes the lint check after we moved to ruff in https://github.com/meta-llama/llama-stack/pull/921. We need to move to a `ruff.toml` file as well as fixing and ignoring some additional checks. Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
82 lines
2.4 KiB
Python
82 lines
2.4 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from enum import Enum
|
|
from typing import Any, Dict, List
|
|
|
|
from llama_stack.apis.common.type_system import (
|
|
ChatCompletionInputType,
|
|
CompletionInputType,
|
|
StringType,
|
|
)
|
|
|
|
from llama_stack.distribution.datatypes import Api
|
|
|
|
|
|
class ColumnName(Enum):
|
|
input_query = "input_query"
|
|
expected_answer = "expected_answer"
|
|
chat_completion_input = "chat_completion_input"
|
|
completion_input = "completion_input"
|
|
generated_answer = "generated_answer"
|
|
context = "context"
|
|
dialog = "dialog"
|
|
|
|
|
|
VALID_SCHEMAS_FOR_SCORING = [
|
|
{
|
|
ColumnName.input_query.value: StringType(),
|
|
ColumnName.expected_answer.value: StringType(),
|
|
ColumnName.generated_answer.value: StringType(),
|
|
},
|
|
{
|
|
ColumnName.input_query.value: StringType(),
|
|
ColumnName.expected_answer.value: StringType(),
|
|
ColumnName.generated_answer.value: StringType(),
|
|
ColumnName.context.value: StringType(),
|
|
},
|
|
]
|
|
|
|
VALID_SCHEMAS_FOR_EVAL = [
|
|
{
|
|
ColumnName.input_query.value: StringType(),
|
|
ColumnName.expected_answer.value: StringType(),
|
|
ColumnName.chat_completion_input.value: ChatCompletionInputType(),
|
|
},
|
|
{
|
|
ColumnName.input_query.value: StringType(),
|
|
ColumnName.expected_answer.value: StringType(),
|
|
ColumnName.completion_input.value: CompletionInputType(),
|
|
},
|
|
]
|
|
|
|
|
|
def get_valid_schemas(api_str: str):
|
|
if api_str == Api.scoring.value:
|
|
return VALID_SCHEMAS_FOR_SCORING
|
|
elif api_str == Api.eval.value:
|
|
return VALID_SCHEMAS_FOR_EVAL
|
|
else:
|
|
raise ValueError(f"Invalid API string: {api_str}")
|
|
|
|
|
|
def validate_dataset_schema(
|
|
dataset_schema: Dict[str, Any],
|
|
expected_schemas: List[Dict[str, Any]],
|
|
):
|
|
if dataset_schema not in expected_schemas:
|
|
raise ValueError(f"Dataset {dataset_schema} does not have a correct input schema in {expected_schemas}")
|
|
|
|
|
|
def validate_row_schema(
|
|
input_row: Dict[str, Any],
|
|
expected_schemas: List[Dict[str, Any]],
|
|
):
|
|
for schema in expected_schemas:
|
|
if all(key in input_row for key in schema):
|
|
return
|
|
|
|
raise ValueError(f"Input row {input_row} does not match any of the expected schemas in {expected_schemas}")
|