llama-stack/llama_toolchain/agentic_system/meta_reference/system_prompt.py
Hardik Shah b8fc4d4dee
Updates to prompt for tool calls (#29)
* update system prompts to drop new line

* Add tool prompt formats

* support json format

* JSON in caps

* function_tag system prompt is also added as a user message

* added docstrings for ToolPromptFormat

---------

Co-authored-by: Hardik Shah <hjshah@fb.com>
2024-08-15 13:23:51 -07:00

180 lines
5.6 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import json
import textwrap
from datetime import datetime
from typing import List
from llama_toolchain.agentic_system.api.datatypes import ToolPromptFormat
from llama_toolchain.inference.api import (
BuiltinTool,
Message,
SystemMessage,
ToolDefinition,
UserMessage,
)
from .tools.builtin import SingleMessageBuiltinTool
def get_agentic_prefix_messages(
builtin_tools: List[SingleMessageBuiltinTool],
custom_tools: List[ToolDefinition],
tool_prompt_format: ToolPromptFormat,
) -> List[Message]:
messages = []
content = ""
if builtin_tools:
content += "Environment: ipython\n"
tool_str = ", ".join(
[
t.get_name()
for t in builtin_tools
if t.get_name() != BuiltinTool.code_interpreter.value
]
)
if tool_str:
content += f"Tools: {tool_str}"
current_date = datetime.now()
formatted_date = current_date.strftime("%d %B %Y")
date_str = f"""
Cutting Knowledge Date: December 2023
Today Date: {formatted_date}\n"""
content += date_str
messages.append(SystemMessage(content=content))
if custom_tools:
if tool_prompt_format == ToolPromptFormat.function_tag:
text = prompt_for_function_tag(custom_tools)
messages.append(UserMessage(content=text))
elif tool_prompt_format == ToolPromptFormat.json:
text = prompt_for_json(custom_tools)
messages.append(UserMessage(content=text))
else:
raise NotImplementedError(
f"Tool prompt format {tool_prompt_format} is not supported"
)
else:
messages.append(SystemMessage(content=content))
return messages
def prompt_for_json(custom_tools: List[ToolDefinition]) -> str:
tool_defs = "\n".join(
translate_custom_tool_definition_to_json(t) for t in custom_tools
)
content = textwrap.dedent(
"""
Answer the user's question by making use of the following functions if needed.
If none of the function can be used, please say so.
Here is a list of functions in JSON format:
{tool_defs}
Return function calls in JSON format.
"""
)
content = content.lstrip("\n").format(tool_defs=tool_defs)
return content
def prompt_for_function_tag(custom_tools: List[ToolDefinition]) -> str:
custom_tool_params = ""
for t in custom_tools:
custom_tool_params += get_instruction_string(t) + "\n"
custom_tool_params += get_parameters_string(t) + "\n\n"
content = f"""
You have access to the following functions:
{custom_tool_params}
Think very carefully before calling functions.
If you choose to call a function ONLY reply in the following format with no prefix or suffix:
<function=example_function_name>{{"example_name": "example_value"}}</function>
Reminder:
- If looking for real time information use relevant functions before falling back to brave_search
- Function calls MUST follow the specified format, start with <function= and end with </function>
- Required parameters MUST be specified
- Only call one function at a time
- Put the entire function call reply on one line
"""
return content
def get_instruction_string(custom_tool_definition) -> str:
return f"Use the function '{custom_tool_definition.tool_name}' to '{custom_tool_definition.description}'"
def get_parameters_string(custom_tool_definition) -> str:
return json.dumps(
{
"name": custom_tool_definition.tool_name,
"description": custom_tool_definition.description,
"parameters": {
name: definition.__dict__
for name, definition in custom_tool_definition.parameters.items()
},
}
)
def translate_custom_tool_definition_to_json(tool_def):
"""Translates ToolDefinition to json as expected by model
eg. output for a function
{
"type": "function",
"function": {
"name": "conv_int",
"description": "Convert serialized fract24 integer into int value.",
"parameters": {
"type": "object",
"properties": [
{
"data": {
"type": "object",
"description": ""
}
}
],
"required": ["data"]
}
}
}
"""
assert isinstance(tool_def.tool_name, str)
func_def = {"type": "function", "function": {}}
func_def["function"]["name"] = tool_def.tool_name
func_def["function"]["description"] = tool_def.description or ""
if tool_def.parameters:
required = []
properties = []
for p_name, p_def in tool_def.parameters.items():
properties.append(
{
p_name: {
# TODO: see if this should not always be object
"type": "object",
"description": p_def.description or "",
}
}
)
if p_def.required:
required.append(p_name)
func_def["function"]["parameters"] = {
"type": "object",
"properties": properties,
"required": required,
}
else:
func_def["function"]["parameters"] = {}
return json.dumps(func_def, indent=4)