Composable building blocks to build Llama Apps
Find a file
Ihar Hrachyshka 355134f51d
fix: Support types.UnionType in schemas (#1721)
# What does this PR do?

Since Python 3.10, unions can be expressed as `type1 | type2`. Sadly,
while this is functionally equivalent to `Union[type1, type2]`, the type
of the expression is different (`types.UnionType`, not `typing.Union`).

We should handle both in schemas.

## Test Plan

Switch a schema type from Union to `|` and confirm the generator doesn't
crash with:

```
Traceback (most recent call last):
  File "<frozen runpy>", line 198, in _run_module_as_main
  File "<frozen runpy>", line 88, in _run_code
  File "/Users/ihrachys/src/llama-stack/docs/openapi_generator/generate.py", line 91, in <module>
    fire.Fire(main)
  File "/Users/ihrachys/.cache/uv/archive-v0/FBgkcwcN-PaJ0NAur__7J/lib/python3.11/site-packages/fire/core.py", line 135, in Fire
    component_trace = _Fire(component, args, parsed_flag_args, context, name)
                      ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/Users/ihrachys/.cache/uv/archive-v0/FBgkcwcN-PaJ0NAur__7J/lib/python3.11/site-packages/fire/core.py", line 468, in _Fire
    component, remaining_args = _CallAndUpdateTrace(
                                ^^^^^^^^^^^^^^^^^^^^
  File "/Users/ihrachys/.cache/uv/archive-v0/FBgkcwcN-PaJ0NAur__7J/lib/python3.11/site-packages/fire/core.py", line 684, in _CallAndUpdateTrace
    component = fn(*varargs, **kwargs)
                ^^^^^^^^^^^^^^^^^^^^^^
  File "/Users/ihrachys/src/llama-stack/docs/openapi_generator/generate.py", line 55, in main
    spec = Specification(
           ^^^^^^^^^^^^^^
  File "/Users/ihrachys/src/llama-stack/docs/openapi_generator/pyopenapi/utility.py", line 30, in __init__
    self.document = generator.generate()
                    ^^^^^^^^^^^^^^^^^^^^
  File "/Users/ihrachys/src/llama-stack/docs/openapi_generator/pyopenapi/generator.py", line 782, in generate
    operation = self._build_operation(op)
                ^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/Users/ihrachys/src/llama-stack/docs/openapi_generator/pyopenapi/generator.py", line 648, in _build_operation
    "application/json": builder.build_media_type(
                        ^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/Users/ihrachys/src/llama-stack/docs/openapi_generator/pyopenapi/generator.py", line 221, in build_media_type
    schema = self.schema_builder.classdef_to_ref(item_type)
             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/Users/ihrachys/src/llama-stack/docs/openapi_generator/pyopenapi/generator.py", line 135, in classdef_to_ref
    type_schema = self.classdef_to_schema(typ)
                  ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/Users/ihrachys/src/llama-stack/docs/openapi_generator/pyopenapi/generator.py", line 116, in classdef_to_schema
    type_schema, type_definitions = self.schema_generator.classdef_to_schema(typ)
                                    ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/Users/ihrachys/src/llama-stack/llama_stack/strong_typing/schema.py", line 607, in classdef_to_schema
    types_defined[sub_name] = self._type_to_schema_with_lookup(sub_type)
                              ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/Users/ihrachys/src/llama-stack/llama_stack/strong_typing/schema.py", line 564, in _type_to_schema_with_lookup
    type_schema = self.type_to_schema(data_type, force_expand=True)
                  ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/Users/ihrachys/src/llama-stack/llama_stack/strong_typing/schema.py", line 320, in type_to_schema
    return self._type_to_schema(data_type, force_expand, json_schema_extra) | common_info
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/Users/ihrachys/src/llama-stack/llama_stack/strong_typing/schema.py", line 487, in _type_to_schema
    property_docstrings = get_class_property_docstrings(typ, self.options.property_description_fun)
                          ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/Users/ihrachys/src/llama-stack/llama_stack/strong_typing/schema.py", line 94, in get_class_property_docstrings
    for base in inspect.getmro(data_type):
                ^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/nix/store/w2wykgpkzidnnr6cpw8wf94ghb0p8big-python3-3.11.11/lib/python3.11/inspect.py", line 731, in getmro
    return cls.__mro__
           ^^^^^^^^^^^
AttributeError: 'types.UnionType' object has no attribute '__mro__'. Did you mean: '__or__'?
```

Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
2025-03-20 09:54:02 -07:00
.github feat: [New Eval Benchamark] IfEval (#1708) 2025-03-19 16:39:59 -07:00
distributions chore: deprecate /v1/inspect/providers (#1678) 2025-03-19 20:27:06 -07:00
docs fix: Restore discriminator for AlgorithmConfig (#1706) 2025-03-20 07:33:26 -07:00
llama_stack fix: Support types.UnionType in schemas (#1721) 2025-03-20 09:54:02 -07:00
rfcs chore: remove straggler references to llama-models (#1345) 2025-03-01 14:26:03 -08:00
scripts feat(server): add attribute based access control for resources (#1703) 2025-03-19 21:28:52 -07:00
tests fix: update default tool call system prompt (#1712) 2025-03-19 22:49:24 -07:00
.gitignore build: remove .python-version (#1513) 2025-03-12 20:08:24 -07:00
.pre-commit-config.yaml chore: consolidate scripts under ./scripts directory (#1646) 2025-03-17 17:56:30 -04:00
.readthedocs.yaml first version of readthedocs (#278) 2024-10-22 10:15:58 +05:30
CHANGELOG.md docs: Add v0.1.6 release notes to changelog (#1506) 2025-03-08 16:20:08 -08:00
CODE_OF_CONDUCT.md Initial commit 2024-07-23 08:32:33 -07:00
CONTRIBUTING.md docs: fix broken test path in CONTRIBUTING.md (#1679) 2025-03-18 13:39:46 -07:00
LICENSE Update LICENSE (#47) 2024-08-29 07:39:50 -07:00
MANIFEST.in build: include .md (#1482) 2025-03-07 12:10:52 -08:00
pyproject.toml chore: fix mypy violations in post_training modules (#1548) 2025-03-18 14:58:16 -07:00
README.md docs: remove redundant installation instructions (#1138) 2025-03-18 14:52:21 -07:00
requirements.txt ci: Bump version to 0.1.7 2025-03-14 15:21:26 -07:00
SECURITY.md Create SECURITY.md 2024-10-08 13:30:40 -04:00
uv.lock feat: Qdrant inline provider (#1273) 2025-03-18 14:04:21 -07:00

Llama Stack

PyPI version PyPI - Downloads License Discord Unit Tests Integration Tests

Quick Start | Documentation | Colab Notebook

Llama Stack standardizes the core building blocks that simplify AI application development. It codifies best practices across the Llama ecosystem. More specifically, it provides

  • Unified API layer for Inference, RAG, Agents, Tools, Safety, Evals, and Telemetry.
  • Plugin architecture to support the rich ecosystem of different API implementations in various environments, including local development, on-premises, cloud, and mobile.
  • Prepackaged verified distributions which offer a one-stop solution for developers to get started quickly and reliably in any environment.
  • Multiple developer interfaces like CLI and SDKs for Python, Typescript, iOS, and Android.
  • Standalone applications as examples for how to build production-grade AI applications with Llama Stack.
Llama Stack

Llama Stack Benefits

  • Flexible Options: Developers can choose their preferred infrastructure without changing APIs and enjoy flexible deployment choices.
  • Consistent Experience: With its unified APIs, Llama Stack makes it easier to build, test, and deploy AI applications with consistent application behavior.
  • Robust Ecosystem: Llama Stack is already integrated with distribution partners (cloud providers, hardware vendors, and AI-focused companies) that offer tailored infrastructure, software, and services for deploying Llama models.

By reducing friction and complexity, Llama Stack empowers developers to focus on what they do best: building transformative generative AI applications.

API Providers

Here is a list of the various API providers and available distributions that can help developers get started easily with Llama Stack.

API Provider Builder Environments Agents Inference Memory Safety Telemetry
Meta Reference Single Node
SambaNova Hosted
Cerebras Hosted
Fireworks Hosted
AWS Bedrock Hosted
Together Hosted
Groq Hosted
Ollama Single Node
TGI Hosted and Single Node
NVIDIA NIM Hosted and Single Node
Chroma Single Node
PG Vector Single Node
PyTorch ExecuTorch On-device iOS
vLLM Hosted and Single Node
OpenAI Hosted
Anthropic Hosted
Gemini Hosted

Distributions

A Llama Stack Distribution (or "distro") is a pre-configured bundle of provider implementations for each API component. Distributions make it easy to get started with a specific deployment scenario - you can begin with a local development setup (eg. ollama) and seamlessly transition to production (eg. Fireworks) without changing your application code. Here are some of the distributions we support:

Distribution Llama Stack Docker Start This Distribution
Meta Reference llamastack/distribution-meta-reference-gpu Guide
Meta Reference Quantized llamastack/distribution-meta-reference-quantized-gpu Guide
SambaNova llamastack/distribution-sambanova Guide
Cerebras llamastack/distribution-cerebras Guide
Ollama llamastack/distribution-ollama Guide
TGI llamastack/distribution-tgi Guide
Together llamastack/distribution-together Guide
Fireworks llamastack/distribution-fireworks Guide
vLLM llamastack/distribution-remote-vllm Guide

Documentation

Please checkout our Documentation page for more details.

Llama Stack Client SDKs

Language Client SDK Package
Python llama-stack-client-python PyPI version
Swift llama-stack-client-swift Swift Package Index
Typescript llama-stack-client-typescript NPM version
Kotlin llama-stack-client-kotlin Maven version

Check out our client SDKs for connecting to a Llama Stack server in your preferred language, you can choose from python, typescript, swift, and kotlin programming languages to quickly build your applications.

You can find more example scripts with client SDKs to talk with the Llama Stack server in our llama-stack-apps repo.