llama-stack/llama_stack/apis/datasets/datasets.py
Xi Yan cb84034567
[Evals API][3/n] scoring_functions / scoring meta-reference implementations (#296)
* wip

* dataset validation

* test_scoring

* cleanup

* clean up test

* comments

* error checking

* dataset client

* test client:

* datasetio client

* clean up

* basic scoring function works

* scorer wip

* equality scorer

* score batch impl

* score batch

* update scoring test

* refactor

* validate scorer input

* address comments

* add all rows scores to ScoringResult

* bugfix

* scoring function def rename
2024-10-24 14:52:30 -07:00

54 lines
1.5 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict, List, Optional, Protocol
from llama_models.llama3.api.datatypes import URL
from llama_models.schema_utils import json_schema_type, webmethod
from pydantic import BaseModel, Field
from llama_stack.apis.common.type_system import ParamType
@json_schema_type
class DatasetDef(BaseModel):
identifier: str = Field(
description="A unique name for the dataset",
)
dataset_schema: Dict[str, ParamType] = Field(
description="The schema definition for this dataset",
)
url: URL
metadata: Dict[str, Any] = Field(
default_factory=dict,
description="Any additional metadata for this dataset",
)
@json_schema_type
class DatasetDefWithProvider(DatasetDef):
provider_id: str = Field(
description="ID of the provider which serves this dataset",
)
class Datasets(Protocol):
@webmethod(route="/datasets/register", method="POST")
async def register_dataset(
self,
dataset_def: DatasetDefWithProvider,
) -> None: ...
@webmethod(route="/datasets/get", method="GET")
async def get_dataset(
self,
dataset_identifier: str,
) -> Optional[DatasetDefWithProvider]: ...
@webmethod(route="/datasets/list", method="GET")
async def list_datasets(self) -> List[DatasetDefWithProvider]: ...