forked from phoenix-oss/llama-stack-mirror
Summary: Agent tests shouldn't need to run inference and tools calls repeatedly. This PR introduces a way to record inference/tool calls and reuse them in subsequent test runs, which makes the tests more reliable and saves costs. Test Plan: Run when there's no recorded calls created (fails): ``` LLAMA_STACK_CONFIG=fireworks pytest -s -v tests/client-sdk/agents/test_agents.py --safety-shield meta-llama/Llama-Guard-3-8B ``` Run when `--record-responses` to record calls: ``` LLAMA_STACK_CONFIG=fireworks pytest -s -v tests/client-sdk/agents/test_agents.py --safety-shield meta-llama/Llama-Guard-3-8B --record-responses ``` Run without `--record-responses` again (succeeds): ``` LLAMA_STACK_CONFIG=fireworks pytest -s -v tests/client-sdk/agents/test_agents.py --safety-shield meta-llama/Llama-Guard-3-8B ```
257 lines
9.1 KiB
Python
257 lines
9.1 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
import copy
|
|
import logging
|
|
import os
|
|
from pathlib import Path
|
|
|
|
import pytest
|
|
from fixtures.recordable_mock import RecordableMock
|
|
from llama_stack_client import LlamaStackClient
|
|
from report import Report
|
|
|
|
from llama_stack import LlamaStackAsLibraryClient
|
|
from llama_stack.apis.datatypes import Api
|
|
from llama_stack.providers.tests.env import get_env_or_fail
|
|
|
|
|
|
def pytest_configure(config):
|
|
config.option.tbstyle = "short"
|
|
config.option.disable_warnings = True
|
|
# Note:
|
|
# if report_path is not provided (aka no option --report in the pytest command),
|
|
# it will be set to False
|
|
# if --report will give None ( in this case we infer report_path)
|
|
# if --report /a/b is provided, it will be set to the path provided
|
|
# We want to handle all these cases and hence explicitly check for False
|
|
report_path = config.getoption("--report")
|
|
if report_path is not False:
|
|
config.pluginmanager.register(Report(report_path))
|
|
|
|
|
|
TEXT_MODEL = "meta-llama/Llama-3.1-8B-Instruct"
|
|
VISION_MODEL = "meta-llama/Llama-3.2-11B-Vision-Instruct"
|
|
|
|
|
|
def pytest_addoption(parser):
|
|
parser.addoption(
|
|
"--report",
|
|
action="store",
|
|
default=False,
|
|
nargs="?",
|
|
type=str,
|
|
help="Path where the test report should be written, e.g. --report=/path/to/report.md",
|
|
)
|
|
parser.addoption(
|
|
"--inference-model",
|
|
default=TEXT_MODEL,
|
|
help="Specify the inference model to use for testing",
|
|
)
|
|
parser.addoption(
|
|
"--vision-inference-model",
|
|
default=VISION_MODEL,
|
|
help="Specify the vision inference model to use for testing",
|
|
)
|
|
parser.addoption(
|
|
"--safety-shield",
|
|
default="meta-llama/Llama-Guard-3-1B",
|
|
help="Specify the safety shield model to use for testing",
|
|
)
|
|
parser.addoption(
|
|
"--embedding-model",
|
|
default=None,
|
|
help="Specify the embedding model to use for testing",
|
|
)
|
|
parser.addoption(
|
|
"--embedding-dimension",
|
|
type=int,
|
|
default=384,
|
|
help="Output dimensionality of the embedding model to use for testing",
|
|
)
|
|
parser.addoption(
|
|
"--record-responses",
|
|
action="store_true",
|
|
default=False,
|
|
help="Record new API responses instead of using cached ones.",
|
|
)
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def provider_data():
|
|
# check env for tavily secret, brave secret and inject all into provider data
|
|
provider_data = {}
|
|
if os.environ.get("TAVILY_SEARCH_API_KEY"):
|
|
provider_data["tavily_search_api_key"] = os.environ["TAVILY_SEARCH_API_KEY"]
|
|
if os.environ.get("BRAVE_SEARCH_API_KEY"):
|
|
provider_data["brave_search_api_key"] = os.environ["BRAVE_SEARCH_API_KEY"]
|
|
return provider_data if len(provider_data) > 0 else None
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def llama_stack_client(provider_data, text_model_id):
|
|
if os.environ.get("LLAMA_STACK_CONFIG"):
|
|
client = LlamaStackAsLibraryClient(
|
|
get_env_or_fail("LLAMA_STACK_CONFIG"),
|
|
provider_data=provider_data,
|
|
skip_logger_removal=True,
|
|
)
|
|
if not client.initialize():
|
|
raise RuntimeError("Initialization failed")
|
|
|
|
elif os.environ.get("LLAMA_STACK_BASE_URL"):
|
|
client = LlamaStackClient(
|
|
base_url=get_env_or_fail("LLAMA_STACK_BASE_URL"),
|
|
provider_data=provider_data,
|
|
)
|
|
else:
|
|
raise ValueError("LLAMA_STACK_CONFIG or LLAMA_STACK_BASE_URL must be set")
|
|
|
|
return client
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def llama_stack_client_with_mocked_inference(llama_stack_client, request):
|
|
"""
|
|
Returns a client with mocked inference APIs and tool runtime APIs that use recorded responses by default.
|
|
|
|
If --record-responses is passed, it will call the real APIs and record the responses.
|
|
"""
|
|
if not isinstance(llama_stack_client, LlamaStackAsLibraryClient):
|
|
logging.warning(
|
|
"llama_stack_client_with_mocked_inference is not supported for this client, returning original client without mocking"
|
|
)
|
|
return llama_stack_client
|
|
|
|
record_responses = request.config.getoption("--record-responses")
|
|
cache_dir = Path(__file__).parent / "fixtures" / "recorded_responses"
|
|
|
|
# Create a shallow copy of the client to avoid modifying the original
|
|
client = copy.copy(llama_stack_client)
|
|
|
|
# Get the inference API used by the agents implementation
|
|
agents_impl = client.async_client.impls[Api.agents]
|
|
original_inference = agents_impl.inference_api
|
|
|
|
# Create a new inference object with the same attributes
|
|
inference_mock = copy.copy(original_inference)
|
|
|
|
# Replace the methods with recordable mocks
|
|
inference_mock.chat_completion = RecordableMock(
|
|
original_inference.chat_completion, cache_dir, "chat_completion", record=record_responses
|
|
)
|
|
inference_mock.completion = RecordableMock(
|
|
original_inference.completion, cache_dir, "text_completion", record=record_responses
|
|
)
|
|
inference_mock.embeddings = RecordableMock(
|
|
original_inference.embeddings, cache_dir, "embeddings", record=record_responses
|
|
)
|
|
|
|
# Replace the inference API in the agents implementation
|
|
agents_impl.inference_api = inference_mock
|
|
|
|
original_tool_runtime_api = agents_impl.tool_runtime_api
|
|
tool_runtime_mock = copy.copy(original_tool_runtime_api)
|
|
|
|
# Replace the methods with recordable mocks
|
|
tool_runtime_mock.invoke_tool = RecordableMock(
|
|
original_tool_runtime_api.invoke_tool, cache_dir, "invoke_tool", record=record_responses
|
|
)
|
|
agents_impl.tool_runtime_api = tool_runtime_mock
|
|
|
|
# Also update the client.inference for consistency
|
|
client.inference = inference_mock
|
|
|
|
return client
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def inference_provider_type(llama_stack_client):
|
|
providers = llama_stack_client.providers.list()
|
|
inference_providers = [p for p in providers if p.api == "inference"]
|
|
assert len(inference_providers) > 0, "No inference providers found"
|
|
return inference_providers[0].provider_type
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def client_with_models(llama_stack_client, text_model_id, vision_model_id, embedding_model_id, embedding_dimension):
|
|
client = llama_stack_client
|
|
|
|
providers = [p for p in client.providers.list() if p.api == "inference"]
|
|
assert len(providers) > 0, "No inference providers found"
|
|
inference_providers = [p.provider_id for p in providers if p.provider_type != "inline::sentence-transformers"]
|
|
|
|
model_ids = {m.identifier for m in client.models.list()}
|
|
model_ids.update(m.provider_resource_id for m in client.models.list())
|
|
|
|
if text_model_id and text_model_id not in model_ids:
|
|
client.models.register(model_id=text_model_id, provider_id=inference_providers[0])
|
|
if vision_model_id and vision_model_id not in model_ids:
|
|
client.models.register(model_id=vision_model_id, provider_id=inference_providers[0])
|
|
|
|
if embedding_model_id and embedding_dimension and embedding_model_id not in model_ids:
|
|
# try to find a provider that supports embeddings, if sentence-transformers is not available
|
|
selected_provider = None
|
|
for p in providers:
|
|
if p.provider_type == "inline::sentence-transformers":
|
|
selected_provider = p
|
|
break
|
|
|
|
selected_provider = selected_provider or providers[0]
|
|
client.models.register(
|
|
model_id=embedding_model_id,
|
|
provider_id=selected_provider.provider_id,
|
|
model_type="embedding",
|
|
metadata={"embedding_dimension": embedding_dimension},
|
|
)
|
|
return client
|
|
|
|
|
|
MODEL_SHORT_IDS = {
|
|
"meta-llama/Llama-3.1-8B-Instruct": "8B",
|
|
"meta-llama/Llama-3.2-11B-Vision-Instruct": "11B",
|
|
"all-MiniLM-L6-v2": "MiniLM",
|
|
}
|
|
|
|
|
|
def get_short_id(value):
|
|
return MODEL_SHORT_IDS.get(value, value)
|
|
|
|
|
|
def pytest_generate_tests(metafunc):
|
|
params = []
|
|
values = []
|
|
id_parts = []
|
|
|
|
if "text_model_id" in metafunc.fixturenames:
|
|
params.append("text_model_id")
|
|
val = metafunc.config.getoption("--inference-model")
|
|
values.append(val)
|
|
id_parts.append(f"txt={get_short_id(val)}")
|
|
|
|
if "vision_model_id" in metafunc.fixturenames:
|
|
params.append("vision_model_id")
|
|
val = metafunc.config.getoption("--vision-inference-model")
|
|
values.append(val)
|
|
id_parts.append(f"vis={get_short_id(val)}")
|
|
|
|
if "embedding_model_id" in metafunc.fixturenames:
|
|
params.append("embedding_model_id")
|
|
val = metafunc.config.getoption("--embedding-model")
|
|
values.append(val)
|
|
if val is not None:
|
|
id_parts.append(f"emb={get_short_id(val)}")
|
|
|
|
if "embedding_dimension" in metafunc.fixturenames:
|
|
params.append("embedding_dimension")
|
|
val = metafunc.config.getoption("--embedding-dimension")
|
|
values.append(val)
|
|
if val != 384:
|
|
id_parts.append(f"dim={val}")
|
|
|
|
if params:
|
|
# Create a single test ID string
|
|
test_id = ":".join(id_parts)
|
|
metafunc.parametrize(params, [values], scope="session", ids=[test_id])
|