forked from phoenix-oss/llama-stack-mirror
# What does this PR do? - See https://github.com/meta-llama/llama-stack/pull/666 & https://github.com/meta-llama/llama-stack/pull/668 - Refactor BaseScoringFn to be just a minimal interface, add new RegistrableBaseScoring - Refactor data schema check - To separately evaluate retrieval component in RAG, we will have scoring functions needing "context" column additionally. - Refactor braintrust eval (more scoring fn added & tested in following PR) ## Test Plan ``` pytest -v -s -m llm_as_judge_scoring_together_inference scoring/test_scoring.py --judge-model meta-llama/Llama-3.2-3B-Instruct pytest -v -s -m basic_scoring_together_inference scoring/test_scoring.py pytest -v -s -m braintrust_scoring_together_inference scoring/test_scoring.py ``` <img width="847" alt="image" src="https://github.com/user-attachments/assets/d099cb2d-6f9c-4bdf-9d0d-f388cf758c0f" /> ``` pytest -v -s -m meta_reference_eval_together_inference eval/test_eval.py pytest -v -s -m meta_reference_eval_together_inference_huggingface_datasetio eval/test_eval.py ``` <img width="850" alt="image" src="https://github.com/user-attachments/assets/dce28fc3-0493-4d34-820a-567260873cc8" /> ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Ran pre-commit to handle lint / formatting issues. - [ ] Read the [contributor guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md), Pull Request section? - [ ] Updated relevant documentation. - [ ] Wrote necessary unit or integration tests.
258 lines
9.7 KiB
Python
258 lines
9.7 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
from typing import Any, Dict, List, Optional
|
|
|
|
from tqdm import tqdm
|
|
|
|
from llama_stack.apis.agents import Agents, StepType
|
|
from llama_stack.apis.datasetio import DatasetIO
|
|
from llama_stack.apis.datasets import Datasets
|
|
from llama_stack.apis.eval_tasks import EvalTask
|
|
from llama_stack.apis.inference import Inference, UserMessage
|
|
from llama_stack.apis.scoring import Scoring
|
|
from llama_stack.distribution.datatypes import Api
|
|
from llama_stack.providers.datatypes import EvalTasksProtocolPrivate
|
|
|
|
from llama_stack.providers.utils.common.data_schema_validator import (
|
|
ColumnName,
|
|
DataSchemaValidatorMixin,
|
|
get_valid_schemas,
|
|
)
|
|
from llama_stack.providers.utils.kvstore import kvstore_impl
|
|
|
|
from .....apis.common.job_types import Job
|
|
from .....apis.eval.eval import Eval, EvalTaskConfig, EvaluateResponse, JobStatus
|
|
|
|
from .config import MetaReferenceEvalConfig
|
|
|
|
EVAL_TASKS_PREFIX = "eval_tasks:"
|
|
|
|
|
|
class MetaReferenceEvalImpl(Eval, EvalTasksProtocolPrivate, DataSchemaValidatorMixin):
|
|
def __init__(
|
|
self,
|
|
config: MetaReferenceEvalConfig,
|
|
datasetio_api: DatasetIO,
|
|
datasets_api: Datasets,
|
|
scoring_api: Scoring,
|
|
inference_api: Inference,
|
|
agents_api: Agents,
|
|
) -> None:
|
|
self.config = config
|
|
self.datasetio_api = datasetio_api
|
|
self.datasets_api = datasets_api
|
|
self.scoring_api = scoring_api
|
|
self.inference_api = inference_api
|
|
self.agents_api = agents_api
|
|
|
|
# TODO: assume sync job, will need jobs API for async scheduling
|
|
self.jobs = {}
|
|
|
|
self.eval_tasks = {}
|
|
|
|
async def initialize(self) -> None:
|
|
self.kvstore = await kvstore_impl(self.config.kvstore)
|
|
# Load existing eval_tasks from kvstore
|
|
start_key = EVAL_TASKS_PREFIX
|
|
end_key = f"{EVAL_TASKS_PREFIX}\xff"
|
|
stored_eval_tasks = await self.kvstore.range(start_key, end_key)
|
|
|
|
for eval_task in stored_eval_tasks:
|
|
eval_task = EvalTask.model_validate_json(eval_task)
|
|
self.eval_tasks[eval_task.identifier] = eval_task
|
|
|
|
async def shutdown(self) -> None: ...
|
|
|
|
async def register_eval_task(self, task_def: EvalTask) -> None:
|
|
# Store in kvstore
|
|
key = f"{EVAL_TASKS_PREFIX}{task_def.identifier}"
|
|
await self.kvstore.set(
|
|
key=key,
|
|
value=task_def.model_dump_json(),
|
|
)
|
|
self.eval_tasks[task_def.identifier] = task_def
|
|
|
|
async def run_eval(
|
|
self,
|
|
task_id: str,
|
|
task_config: EvalTaskConfig,
|
|
) -> Job:
|
|
task_def = self.eval_tasks[task_id]
|
|
dataset_id = task_def.dataset_id
|
|
candidate = task_config.eval_candidate
|
|
scoring_functions = task_def.scoring_functions
|
|
dataset_def = await self.datasets_api.get_dataset(dataset_id=dataset_id)
|
|
self.validate_dataset_schema(
|
|
dataset_def.dataset_schema, get_valid_schemas(Api.eval.value)
|
|
)
|
|
all_rows = await self.datasetio_api.get_rows_paginated(
|
|
dataset_id=dataset_id,
|
|
rows_in_page=(
|
|
-1 if task_config.num_examples is None else task_config.num_examples
|
|
),
|
|
)
|
|
res = await self.evaluate_rows(
|
|
task_id=task_id,
|
|
input_rows=all_rows.rows,
|
|
scoring_functions=scoring_functions,
|
|
task_config=task_config,
|
|
)
|
|
|
|
# TODO: currently needs to wait for generation before returning
|
|
# need job scheduler queue (ray/celery) w/ jobs api
|
|
job_id = str(len(self.jobs))
|
|
self.jobs[job_id] = res
|
|
return Job(job_id=job_id)
|
|
|
|
async def _run_agent_generation(
|
|
self, input_rows: List[Dict[str, Any]], task_config: EvalTaskConfig
|
|
) -> List[Dict[str, Any]]:
|
|
candidate = task_config.eval_candidate
|
|
create_response = await self.agents_api.create_agent(candidate.config)
|
|
agent_id = create_response.agent_id
|
|
|
|
generations = []
|
|
for i, x in tqdm(enumerate(input_rows)):
|
|
assert ColumnName.chat_completion_input.value in x, "Invalid input row"
|
|
input_messages = eval(str(x[ColumnName.chat_completion_input.value]))
|
|
input_messages = [UserMessage(**x) for x in input_messages]
|
|
|
|
# NOTE: only single-turn agent generation is supported. Create a new session for each input row
|
|
session_create_response = await self.agents_api.create_agent_session(
|
|
agent_id, f"session-{i}"
|
|
)
|
|
session_id = session_create_response.session_id
|
|
|
|
turn_request = dict(
|
|
agent_id=agent_id,
|
|
session_id=session_id,
|
|
messages=input_messages,
|
|
stream=True,
|
|
)
|
|
turn_response = [
|
|
chunk
|
|
async for chunk in await self.agents_api.create_agent_turn(
|
|
**turn_request
|
|
)
|
|
]
|
|
final_event = turn_response[-1].event.payload
|
|
|
|
# check if there's a memory retrieval step and extract the context
|
|
memory_rag_context = None
|
|
for step in final_event.turn.steps:
|
|
if step.step_type == StepType.memory_retrieval.value:
|
|
memory_rag_context = " ".join(x.text for x in step.inserted_context)
|
|
|
|
agent_generation = {}
|
|
agent_generation[ColumnName.generated_answer.value] = (
|
|
final_event.turn.output_message.content
|
|
)
|
|
if memory_rag_context:
|
|
agent_generation[ColumnName.context.value] = memory_rag_context
|
|
|
|
generations.append(agent_generation)
|
|
|
|
return generations
|
|
|
|
async def _run_model_generation(
|
|
self, input_rows: List[Dict[str, Any]], task_config: EvalTaskConfig
|
|
) -> List[Dict[str, Any]]:
|
|
candidate = task_config.eval_candidate
|
|
assert (
|
|
candidate.sampling_params.max_tokens is not None
|
|
), "SamplingParams.max_tokens must be provided"
|
|
|
|
generations = []
|
|
for x in tqdm(input_rows):
|
|
if ColumnName.completion_input.value in x:
|
|
input_content = eval(str(x[ColumnName.completion_input.value]))
|
|
response = await self.inference_api.completion(
|
|
model=candidate.model,
|
|
content=input_content,
|
|
sampling_params=candidate.sampling_params,
|
|
)
|
|
generations.append(
|
|
{
|
|
ColumnName.generated_answer.value: response.completion_message.content
|
|
}
|
|
)
|
|
elif ColumnName.chat_completion_input.value in x:
|
|
chat_completion_input_str = str(
|
|
x[ColumnName.chat_completion_input.value]
|
|
)
|
|
input_messages = eval(chat_completion_input_str)
|
|
input_messages = [UserMessage(**x) for x in input_messages]
|
|
messages = []
|
|
if candidate.system_message:
|
|
messages.append(candidate.system_message)
|
|
messages += input_messages
|
|
response = await self.inference_api.chat_completion(
|
|
model_id=candidate.model,
|
|
messages=messages,
|
|
sampling_params=candidate.sampling_params,
|
|
)
|
|
generations.append(
|
|
{
|
|
ColumnName.generated_answer.value: response.completion_message.content
|
|
}
|
|
)
|
|
else:
|
|
raise ValueError("Invalid input row")
|
|
|
|
return generations
|
|
|
|
async def evaluate_rows(
|
|
self,
|
|
task_id: str,
|
|
input_rows: List[Dict[str, Any]],
|
|
scoring_functions: List[str],
|
|
task_config: EvalTaskConfig,
|
|
) -> EvaluateResponse:
|
|
candidate = task_config.eval_candidate
|
|
if candidate.type == "agent":
|
|
generations = await self._run_agent_generation(input_rows, task_config)
|
|
elif candidate.type == "model":
|
|
generations = await self._run_model_generation(input_rows, task_config)
|
|
else:
|
|
raise ValueError(f"Invalid candidate type: {candidate.type}")
|
|
|
|
# scoring with generated_answer
|
|
score_input_rows = [
|
|
input_r | generated_r
|
|
for input_r, generated_r in zip(input_rows, generations)
|
|
]
|
|
|
|
if task_config.type == "app" and task_config.scoring_params is not None:
|
|
scoring_functions_dict = {
|
|
scoring_fn_id: task_config.scoring_params.get(scoring_fn_id, None)
|
|
for scoring_fn_id in scoring_functions
|
|
}
|
|
else:
|
|
scoring_functions_dict = {
|
|
scoring_fn_id: None for scoring_fn_id in scoring_functions
|
|
}
|
|
|
|
score_response = await self.scoring_api.score(
|
|
input_rows=score_input_rows, scoring_functions=scoring_functions_dict
|
|
)
|
|
|
|
return EvaluateResponse(generations=generations, scores=score_response.results)
|
|
|
|
async def job_status(self, task_id: str, job_id: str) -> Optional[JobStatus]:
|
|
if job_id in self.jobs:
|
|
return JobStatus.completed
|
|
|
|
return None
|
|
|
|
async def job_cancel(self, task_id: str, job_id: str) -> None:
|
|
raise NotImplementedError("Job cancel is not implemented yet")
|
|
|
|
async def job_result(self, task_id: str, job_id: str) -> EvaluateResponse:
|
|
status = await self.job_status(task_id, job_id)
|
|
if not status or status != JobStatus.completed:
|
|
raise ValueError(f"Job is not completed, Status: {status.value}")
|
|
|
|
return self.jobs[job_id]
|